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Hamiltonian Monte Carlo (HMC): sample from continuous target distribution 7(q~) o € Y )by Overview Variable selection in Bayesian logistic regression (BLR)
q (t) __ \V/ KC C | - |
. . .y . . : : : : — , Basic setup: y; ~ Bernoulli (o(X; B)),i=1,---,100
introducing auxiliary momentum variables p¢ € R™V¢ and simulating Hamiltonian dynamics dp%t( . (P") - Methods used: | | where X ¢ RI00X20 g ¢ R20. and<a($) N 1) /(1 + e=%) is the sigmoid function.
7 = —vqc [/ (q ) Mixed HMC (M-HMC) : Custom JAX implementation vj,3 = 1,-+,20 are binary variables indicating the presence of a particular
o , . — : : . . . . Discontinuous HMC (DHMC) : Custom JAX implementation component of /3, and IV (0, 251) is an umnformalt;ze prior on 5.
Remarkable empirical success, but can’t be applied to\distributions with mixed discrete and continuous variables HMC-within-Gibbs (HwG) : Custom JAX implementation Joint distribution: p(5, 7. X, ) = N(3/0,250) T % (1 - p)*¥
No-U-Turn Sampler (NUTS) : Using NumPyro, for GMMs e a1 1an
. _ cy . . . . . here p; = o(3°20 | X, i=1,---,100.
Our Goal: sample from target distribution (x,q¢) o« e~V (®9°) with mixed discrete (z € Q) and continuous (¢“ € R™¢) variables NUTS.-within-Gibbs (NwG) : Usi 1 sten in PyMC3 where p; = 0/(2 5=y Xis0575),
-within-Gibbs (NwG) : Using compound step in Py Target distribution: p(3,~|X, 1)
o Specialized Gibb lers : Custom Numba implementati . M. - |
EXl stin g appr oa Ch es: pecialize 10DS Sampiers ustom /Numba 1mplementation Methods tested: M-HMC, DHMC, HwG, NwG, Gibbs (Polson et al., 2013)
e (Polson et al., 2013) for Bayesian logistic regression Results summary:
e Integrate out the discrete variables: e (Chen et al., 2013) for Correlated topic models e All samplers are accurate
. e M-HMC is more efficient than DHMC, HwG, NwG and Gibbs
— Only applicable on a small scale ® Performance measure: e M-HMC exhibits U-turn behavior
— Can’t alw ays be carried out automatic ally Stan Pyro/NumPyro e Minimum relative effective sample size (MRESS) e M-HMC benefits from distributed/more frequent discrete updates

.« . . . : — Evoluti f MRESS i , with npL = 600
e The minimum ESS over all dimensions Evolution of MRESS as L changes, np = 1 o T

e Alternate between continuous HMC and generic discrete updates:

e Normalized by the number of samples : Kﬁ T

— Discrete updates can only be done infrequentl oy - - e - 6 - T-a
P y q y AV e Estimated using multiple independent chains T

— Hard to make long-range proposals PYMC3 Turing.ji Discrete proposals in M-HMC: | e

e Update discrete and continuous variables in tandem:

— Discontinuous HMC (DHMC), Probabilistic path HMC (PPHMC)

— DHMC 1s best suited for ordinal paramters, and has inefficient embedding and algorithmic structure
— PPHMC only works for phylogenetic trees
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Correlated topic models (CTMs)

24D Gaussian mixture model (GMM) Basic setup:

Basic setup: 7(x, qc) — ¢, N (qC |z, 20) where Given the topics 3, a vector . € R® and a K x K covariance matrix 3, CTM
assumes the following generative process for the dth document with N, words:

- n . b1 = 0.15. by = b3 = 0.3,y = 0.25, % = 31 S~ N,
. Mlxed Hamlltonlan Monte carIO (M-HMC) ,ui,,ug,,ug,,ujarefiom24pejmutations0f—2,0,2,4 5 gﬁreg}fi?{l""’Nd}:

(a) Draw topic assignment 24 ,,|ng ~ Categ(f(n4))

Target distribution: 7 (z, ¢©) (b) Draw word W |2a.n, B ~ Categ(B-, )
. : . - . M. Target distribution: ,z|w; B, 1w, 2
Mixed Hamiltonian Monte Carlo (M-HMC) MHWHMC v.s. M-HMC for 1D GMM (@) o, Methods tested: M-HMC, DHMC, HwG, NwG, NUTS g p(n, z|w; B, p, ) |
e M-HMC also evolves the discrete and continuous variables 1in tandem Require: U, target potential T > Results summary: Methods tested: M-HMC, DHMC, HwG, NwG, Gibbs (Chen et al., 2013)
e M-HMC is applicable to any distributions with mixed support (), discrete proposal Q:? 7 » e All samplers are accurate Results summary: e DHMC fails; Gibbs occlusionally fails
e M-HMC can be efficiently implemented using Laplace momentum Input: 29 current discrete state ° e M-HMC is more efficient than DHMC. HwG and NwG e M-HMC is 8x more efficient than HwG/NwG
C(0) - . 3 - , . . .
"We start with an illustrative example on a 1D Gaussian mixture model (GMM) ) 4" Cu.rre.nt continuous location ;“ 0 » e M-HMC also outperforms NUTS : » M-HMCs 60x more .efﬁment than Gibbs
with 4 mixture componets. Use z € {1, 2, 3,4} to denote the discrete variable, . €, step size; L ’f of steps P = 25 Gibbs sampler, traceplot and histogram
and ¢¢ € R to denote the continuous variable. We want to sample from function M-HMC(z(?), ¢¢(O) ¢ LU, Q) —2 > B =
72, ¢%) = bu N (€|, ) k() ~ Exponential(1), p°© ~ N(0, 1) 0.5 NDTS, MRESS: 106 40 = o s
where T $(O), . D 1.D(0) 0 o or %0 . 401\,1 HMC62 y 80 0 M-HMC, MRESS: 1.91 x 140_ ;53 .
, # of steps in one M- iteration : =
®1 = 0.15,¢02 = ¢3 = 0.3,04 = 0.25,2 = 0.1 ¢¢ + ¢¢9, p€ < pCO AUP <0 P , : = Ewg, ﬁﬁi: ziz X 18_4 HMC-within-Gibbs, traceplot and histogram
— —9 — () — — 4 for ¢t from 1 to L do (b) MHWHMCI 10 samples, H = (_2' O’ 2’ 4) i Wi, PR X =2
H fz = s S c .C c C S DHMC, MRESS: 3.61 x 10~ = oo
e s ¢ 0. ey U]
The right panel shows M-HMC 1n this simple case. The simple change implied q",p- < leapfrog(q~, p ’_i_)( ey CCDD ° s
by the M-HMC framework leads to a more efficient sampler that is able to correct i~ Q(-|z), AE < log < 7 Q@) & =N
the bias from naively doing Metropolis-Hastings (MH) updates within HMC. e U2a0)Q(z|T) >
# Naive MH within HMC _ M-HMC, traceplot and histogram
More generally, M-HMC can be easily applied to arbitrary distributions with if Exponential(1) > AE then | gizced! 57
mixed support, and introduces minimal overhead compared to existing HMC T § las€ed. * 20'00 40'00 6OIOO SOIOO 10000 -l
. . —-25
\_methods. Refer to the paper for more details on the general algorithm. ) end if g
oF Number of samples i
g Comparison with Discontinuous HMC (DHMC): ) # M-HMC
e DHMC relies on embedding that works best for ordinal parameters if 2 > AE then -4 -2 0 2 4 6
o D _ o AUP « AUP + U(%,¢°) — U(z, ¢°) (c) M-HMC, 10° samples, u = (—2,0,2,4)' -
Ty =N <= (; € (anaan—l—l]ao = a1 < ag <
SN IV O Conclusions
e DHMC needs to update all discrete variables at every step, inetficient end if /e&@
M-HMC, 10° samples, y = (—2,2,0,4)T DHMC, 5 x 10° samples, u = (—2,0,2,4)T DHMC, 107 samples, u = (—2,2,0,4)T end for Z

# Final MH correction

E <+ U (z,q¢°)+ K“(p°)

EO) U (200, €O 4 K€(pC0)
E(O)—AUD)}

e M-HMC evolves discrete and continuous variables in tandem, and is applicable to any distributions with mixed support.
e M-HMC with Laplace momentum 1is easy to implement, and introduces minimal overhead when compared with existing HMC methods.

e M-HMC is shown to be more efficient than strong baselines on challenging distributions with mixed support.

Accept z, ¢¢ w.p. min{1, e~ (F~
return x, qc
~/J \.end function




