Erratum to "Mixed Hamiltonian Monte Carlo for Mixed Discrete and Continuous Variables"

Guangyao Zhou Vicarious AI Union City, CA 94587, USA stannis@vicarious.com

It has come to my attention¹ that there was a mistake in the proof of Lemma 4 in the supplementary of the paper [1], which led to an incorrect MH correction term in the presented M-HMC algorithm.

The incorrect MH correction term coincides with the correct one for random-walk proposals, and for modified Gibbs proposals on models with only binary discrete random variables. Due to a bug² in propagating the type of proposals in the code, all the numerical experiments in Section 3 of [1] were in fact run with a modified random-walk proposal instead of the intended modified Gibbs proposal. Some sanity check experiments on the 1D GMM were run with a modified Gibbs proposal, but in the considered 1D GMM, the 4 components are well-separated, which is a case that makes the incorrect MH correction term numerically indistinguishable from the correct one. As a result, the numerical experiments and the conclusions in the paper are still valid, although they were derived with a less efficient random-walk proposal.

I have updated the arXiv version of the paper³ and the code on GitHub⁴ with necessary changes:

- I updated Algorithm 1 in the main text and Algorithm 1 in the supplementary with the correct MH correction term, and fixed the code⁵ accordingly.
- I fixed proof of Lemma 4 in supplementary and included detailed intermediate calculations.
- I updated the corresponding paragraph at the end of Section 2.2 to emphasize that using Gibbs updates for the discrete variables is in fact valid with the correct MH correction term.
- I conducted additional experiments on M-HMC with 3 different discrete proposals. See results in Section 5.3 in supplementary for comparison of performances. Gibbs proposals consistently outperform modified random-walk proposals and modified Gibbs proposals. As a result, I updated the results in Section 3 to use results with Gibbs proposals. For example, M-HMC with Gibbs proposals is 1.8 times more efficient than NUTS on the 24D GMM, and is almost 60 times more efficient than Gibbs/more than 8 times more efficient than HwG on CTMs, a further improvement upon the performance reported in the original paper.

I sincerely apologize for any inconveniences caused by this mistake.

Acknowledgments

I would like to thank Du Phan for the help in correcting the mistake in the MH correction term.

References

 Guangyao Zhou. Mixed hamiltonian monte carlo for mixed discrete and continuous variables. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 17094–17104. Curran Associates, Inc., 2020.

¹See discussions at https://github.com/pyro-ppl/numpyro/pull/826 for more details.

²https://github.com/StannisZhou/mixed_hmc/commit/d0cdbbbce4276d58ee6f9953b8517f819e327a92 ³https://arxiv.org/abs/1909.04852

⁴https://github.com/StannisZhou/mixed_hmc

⁵https://github.com/StannisZhou/mixed_hmc/commit/a788c77fa2f61f966e6a60340d4a6f0a0f9cb181