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Capacities and efficient computation of first-passage probabilities
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A reversible diffusion process is initialized at position x0 and run until it first hits any of several targets. What
is the probability that it terminates at a particular target? We propose a computationally efficient approach for
estimating this probability, focused on those situations in which it takes a long time to hit any target. In these
cases, direct simulation of the hitting probabilities becomes prohibitively expensive. On the other hand, if the
timescales are sufficiently long, then the system will essentially “forget” its initial condition before it encounters
a target. In these cases the hitting probabilities can be accurately approximated using only local simulations
around each target, obviating the need for direct simulations. In empirical tests, we find that these local estimates
can be computed in the same time it would take to compute a single direct simulation, but that they achieve an
accuracy that would require thousands of direct simulation runs.
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I. INTRODUCTION

Reversible diffusions play a key role in a wide variety of
physical systems. For example, the folding of macromolecules
into their native configurations is often posed as a diffusion
(either directly through simulations of atomic dynamics or
indirectly through mesoscopic models [1–3]), the fluctuation
of chemical species in solution can be modeled as diffusions
(“chemical Langevin equations” are one classic example of
this approach [4,5]), the motion of particles through mem-
branes can be posed as a diffusion [6], and so on. In all cases,
the the physical state of the system at time t is represented
through a variable Xt , confined to a finite region � and
evolving according to a stochastic differential equation.

In this paper we seek to estimate first-passage probabilities
(sometimes also called “splitting probabilities” [7] or simply
“hitting probabilities”) of such diffusions: given an initial
condition x0 and a collection of targets, what is the probability
that the process first hits any particular target before hitting
any of the other targets? Targets might represent, for example,
multiple exit locations from a region of the state space in
a statistical mechanics problem or the establishment of new
intramolecular bonds in a folding problem. Where will the
system first exit or what is the next step in folding? This
paper develops an alternative algorithm for the approximation
of first-passage probabilities.
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To keep things simple, most of the discussion will be in the
context of just two targets, A and B, A, B ⊂ �, although all of
the results apply, with trivial notational changes, to any finite
set of targets. In this context, “hitting probability” (also known
as “first-passage probability”) refers to the specific probability
that Xt hits target A before target B. The algorithm is designed
for cases where the diffusion “forgets” its initial condition
before encountering a target. Precise definitions are in Sec. II,
but to get the main idea consider a region M in � that lies
outside of the targets A and B, M ⊂ �\(A ∪ B), and assume
that the diffusion starts in M (x0 ∈ M). Recall that reversible
diffusions are ergodic: as time goes on, it gets harder and
harder to guess the initial condition from the current configu-
ration. As this happens, the process is said to become “mixed,”
and the speed with which the initial condition is forgotten is
called the “mixing rate.” If the first-passage time out of M is
long relative to this mixing rate, then the hitting probability
will be nearly independent of x0. This is what we mean by
“forgets” its initial condition. Our main result (Theorem 1)
asserts that if the hitting probability varies by at most ε among
all initial conditions in M, then the proposed algorithm’s
approximation error is less than ε + √

ε/2. Figure 1 gives a
rough sketch of this idea.

When would these conditions hold? We will have more
to say about this in Sec. III, but for now we note that the
narrow-escape literature gives at least one class of examples.
In these examples Xt is a Brownian motion trapped inside a
set by reflecting boundaries, and the targets are very small
windows in boundary. These models have been successfully
applied to a variety of mesoscopic biosystems (cf. Ref. [8] and
the references therein). These kinds of diffusions may also be
relevant for modeling the folding of large molecules. Accord-
ing to McLeish, “folding rates are controlled by the rate of
diffusion of pieces of the open coil in their search for favorable
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FIG. 1. First-passage capacities allow efficient computation of
hitting probabilities. We consider a reversible stochastic differential
equation in an n-dimensional state space, initialized at some config-
uration x0 inside a set M. What is the probability that the diffusion
will reach region A before B? We assume that the hitting probability
is nearly the same for every initial condition x0 ∈ M—differing by
at most ε across all initial conditions. (See Theorem 2 for some suf-
ficient conditions, involving small targets and/or high dimensions.)
Theorem 1 establishes an approximation to the hitting probability
that is accurate to within ε + √

ε/2 and uses only “first-passage
capacities.” These capacities can be computed from simulations that
take place locally, meaning in the neighborhoods of the targets and
entirely outside of M. Here we depict several examples. In each
case, the first-passage capacities can be computed efficiently using
simulations confined only to the areas shaded in gray.

contacts” [9]. There is also some experimental evidence that
the exploration of large regions is the rate-limiting step for a
variety of processes [10–13]. If these results bear out, then
to the extent that exit times are long it will be possible to
obtain good approximations for hitting probabilities using our
approach.

Many standard methods for calculating hitting probabili-
ties fail for diffusions of this kind. When the escape time from
M is large, the associated partial differential equations often
include large Lipschitz constants, and direct Monte Carlo
simulation requires a prohibitive number of time steps (cf.
Refs. [14–16]). Some authors take a pessimistic view of this
subject: “If these processes are intrinsically slow, i.e., require
an extensive sampling of state space, not much can be done
to speed up their simulation without destroying the dynamics
of the system” [17]. But in fact diffusions of this kind enjoy
certain properties which can actually make analyses easier.
The literature includes a variety of tools which use such
properties to advantage. Here we review a few of these tools:

Analytic analyses. When targets are very small, the first-
passage times (as opposed to probabilities) are often well
approximated by analytic formulas. The narrow-escape liter-
ature has developed many techniques in this direction. Much
of this literature focuses on making these formulas as accurate
as possible for specific geometric configurations, such as the
case of N circular targets (cf. Ref. [18]), the case that one
target lies at the end of a long tube (cf. Ref. [19]), or the
case that the motion is trapped inside a symmetric domain (cf.
Refs. [20–23]). There is also some work on efficient numerical
methods for low-dimensional problems using insights from
these analytic results (cf. Ref. [24]). Note that this literature
mostly focuses on hitting times, whereas in this paper we

focus on hitting probabilities. Nevertheless, the first-passage
probabilities are nearly inversely proportional to the mean
first-passage times for many cases, so these techniques can
often be used to estimate first-passage probabilities. A helpful
overview of many of the main ideas in this literature can be
found in Ref. [25].

Markov state models. Markov state models (MSM) begin
by partitioning the state space of the diffusion into n sets
(“states”). The diffusion can be understood at a coarse level
by looking at which state the process is in at any given
time (cf. Refs. [26–28]). In some cases the time it takes to
move between states is long relative to the rate of mixing
inside the states. This separation of timescales ensures that the
coarse process is approximately Markovian. We can therefore
approximately simulate the discrete process as long as we
know the distribution on the exit times and the probability of
transitioning to each possible state. The amount of computa-
tional time required to simulate from this approximate process
does not depend upon how long the process actually spends in
each state.

Site-localizing functions. Site-localizing functions define
a kind of continuous version of the MSMs: instead of cre-
ating a hard partitioning of the space, one constructs basis
functions g1(x) · · · gn(x) such that

∑
i gi(x) = 1. In many

cases the action of the relevant diffusion operators can be
well approximated by the their action on the n-dimensional
space spanned by these basis functions. For example, under
a separation-of-timescales assumption, Morro [29] shows a
way to design basis functions which faithfully represent the
diffusion’s behavior on the slow timescale.

Milestoning. In some cases it is possible to construct a low-
dimensional reaction coordinate which measures the distance
from the targets in some suitable metric. In some cases the
movement along this reaction coordinate is slow relative to
the mixing rate along all other directions. This separation of
timescales ensures that the dynamics of the diffusion along
this coordinate are approximately Markovian. If the reaction
coordinate is carefully chosen, many properties of the original
diffusion are maintained in this low-dimensional projection
[7]. Simulating the low-dimensional approximate diffusion
can yield useful insights into the behavior of the original
system [30].

Here we will investigate a different way to make use of
separated timescales. Let hA,B(x) denote the probability of
hitting A before B given that the diffusion is initialized at
x ∈ M. It is well known that hA,B(x) can be represented as
the solution of a variational problem. (A detailed account of
this and related facts is included in Appendix A.) Under the
special condition that hA,B(x) is a constant, say hA,B(x) = h̄
for all x ∈ M, the solution of the variational problem, and
hence h̄, can be written in terms of certain integrals over local
regions surrounding the targets (indicated by the gray-shaded
areas in the examples depicted in Fig. 1). We will refer to
these integrals as “first-passage capacities”; see Sec. II for
the formal definition. If, on the other hand, hA,B(x) is not
exactly constant, then h̄ becomes an approximation rather
than an exact formula: for all x ∈ M, |h̄ − h(x)| � ε + √

ε/2,
where ε is the difference between the maximum and minimum
hitting probabilities over M. This is the main theoretical result,
Theorem Sec. 1, which reduces the first-passage problem to
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one of evaluating local integrals. For the purpose of evaluating
these integrals, we introduce a Monte Carlo approach, that
we call the shell method, and demonstrate its accuracy and
computational efficiency.

The key advantage of our approach is that it allows us to
get good estimates while completely ignoring all dynamics
inside M. This is particularly valuable if M is a large, high-
dimensional set. In this case it is unclear how one would parti-
tion M or formulate a meaningful reaction coordinate, calling
into question the utility of Markov state models and mileston-
ing under these conditions. Furthermore, integrating over all
of M is computationally burdensome, making site-localizing
functions also difficult to implement. Asymptotic techniques
from the narrow escape and reaction-controlled diffusion lit-
erature may still be applied, but only if the problem falls into
one of a collection of very specific cases, most of which lie in
two or three dimensions, feature regular targets, and assume
that the diffusion has no energetic potential. By contrast,
first-passage capacities can be calculated efficiently for a
diffusion with an arbitrary energetic potential, target shape,
and ambient dimension. Moreover, first-passage capacities
are fundamentally nonasymptotic quantities; for any problem
the approximation error is bounded explicitly in terms of the
extent to which the hitting probability varies across M. On the
other hand, the strengths of the capacity-based approach are
accompanied by a significant limitation: the approach gives
no information about first-passage times. Indeed, the temporal
process is explicitly eliminated. In general, there is an overall
proportionality constant which connects first-passage hitting
probabilities to first-passage hitting times, but this relationship
cannot be recovered from the first-passage capacities. We
discuss this limitation further in Sec. VI.

In the following section (Sec. II “Preliminaries”) we intro-
duce notation, define the diffusion and first-passage probabil-
ities, enumerate the main assumptions, and finally define the
first-passage capacities that are at the heart of this approach.
In Sec. III we show that these capacities can be used to
accurately estimate first-passage probabilities, and by way of
examples, we give some sufficient conditions that guarantee
that the main assumptions are satisfied. In Sec. IV, we develop
the “shell method,” a numerical approach to computing first-
passage capacities. And in Sec. V we investigate the speed
and accuracy of the capacity-based approach in a variety of
computational experiments.

II. PRELIMINARIES

The results in this paper are about diffusion processes
X confined to an open bounded set � ⊂ Rn with reflecting
smooth boundary ∂� for n � 3. We assume X is driven by an
n-dimensional standard Brownian motion W ,

dXt = b(Xt ) dt + σ (Xt ) dWt , (1)

where b:� → Rn and σ :� → Rn×n are continuously dif-
ferentiable vector-valued and matrix-valued functions. We
further assume that a(x) = σ (x)σ (x)T is uniformly elliptic
on �, i.e., the smallest eigenvalues of a are bounded away
from zero. Let �̄ denote the closure of � (and in general
let S̄ denote the closure of any set S ⊂ �̄). For the precise
definition of the reflected process, we adopt the framework

developed by Lions and Sznitman [31]: Let n = n(x) denote
the outward normal of ∂� and ν: ∂� → Rn a smooth vector
field satisfying nT ν � c > 0, and assume that x0 ∈ �. Then
there is a unique pathwise continuous and W -adapted strong
Markov process Xt ∈ �̄, and (random) measure L, such that

Xt = x0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ (Xs) dWs −

∫ t

0
ν(Xs)L(ds)

(2)

and L({t :Xt /∈ ∂�}) = 0. For convenience, we will refer to
X by simply saying “the reflected diffusion process (1).” We
further assume that X is a reversible process, with equilibrium
distribution given by

ρ(x)
.= 1

Z
e−U (x), Z =

∫
x∈�

e−U (x) dx,

where U :�̄ → R is continuously differentiable. As shown by
Chen [32], to ensure that X is reversible it is sufficient that

bi(x) = 1

2

∑
j

∂ai j (x)/∂x j − 1

2

∑
j

ai j (x)∂U (x)/∂x j,

ν(x) = a(x)n(x),

(3)

where a(x) = σ (x)σ (x)T is uniformly elliptic. When the
conditions in (3) are in force we will say that X satisfies
the reversibility conditions relative to U . We assume these
conditions throughout the paper.

The main goal of this paper is to estimate first-passage
probabilities for X . We here give a formal definition for these
hitting probabilities for the two-target case, although all of
our results extend, straightforwardly, to finite collections of
targets:

Definition 1. (First passage probabilities). Fix two disjoint
sets A, B ⊂ �. The first-passage probability function hA,B(x)
is the probability that the process X visits A before B if it is
initialized at X0 = x. Formally,

hA,B(x) � P (XτA∪B ∈ A|X0 = x),

where τA∪B indicates the first-passage time to A ∪ B, i.e.,
τA∪B � inf{t � 0:Xt ∈ A ∪ B}. Throughout this paper we will
use τS to denote the first-passage time to a set S and hS,S′ to
denote the hitting probability function for targets S, S′.

As discussed in the introduction, these hitting probabilities
are much easier to estimate if the process forgets its initial
condition to such an extent that the hitting probabilities are
nearly constant for any initial condition inside a set M. Here
we give a formal definition for this property:

Definition 2. (The ε-flatness condition) A hitting proba-
bility function hA,B(x) is said to be “ε-flat relative to M”
whenever

sup
x,y∈M

|hA,B(x) − hA,B(y)| < ε.

As we shall see in Theorem 1, this condition is exactly what
we need to show that the hitting probabilities within M can
be well approximated using “first-passage capacities.” These
capacities are the last piece we must define:

Definition 3. (Capacity) Let S ⊂ S̃ ⊂ � be open sets and
let X be a diffusion governed by the SDE in Eq. (2) and
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satisfying the reversibility conditions in Eq. (3). The first-
passage capacity cap(S, S̃) for X is defined as

cap(S, S̃) �
∫

S̃\S
||σ (x)∇hS,S̃c (x)||2e−U (x) dx.

We refer the reader to Appendix A for more details on
capacity and the related concept of Dirichlet form. Note
that there are several related definitions of “capacity” in the
probabilistic potential theory literature, all slightly different.
For example, the harmonic capacity arises by taking the above
definition in the special case when the diffusion is a simple
Brownian motion. The definition used here most closely fol-
lows the work of Bovier [33,34]. Throughout this work, the
term is used only in the sense of the above definition.

III. MAIN THEORETICAL RESULTS

Our main theorem shows that the first-passage capacities
give accurate approximations of the hitting probabilities when
the hitting probabilities are themselves ε-flat in a region
outside a neighborhood of the targets.

Theorem 1. Let A ⊂ Ã, B ⊂ B̃ be open sets and assume
that hA,B(x) is ε-flat relative to �\(Ã ∪ B̃). Then the first-
passage probabilities are well-approximated by the first-
passage capacities:

sup
x/∈Ã,B̃

∣∣∣∣hA,B(x) − cap(A, Ã)

cap(A, Ã) + cap(B, B̃)

∣∣∣∣ � ε +
√

ε/2.

We defer the proof to Appendix C. Note that the generaliza-
tion to multiple targets is straightforward due to the additive
property of capacities (Proposition 2 in Appendix A). In
general, the hitting probability is approximately proportional
to the corresponding capacity.

When might the ε-flatness condition hold? In the introduc-
tion, we gave an intuitive explanation for when this might be
expected to happen, namely, whenever the diffusion forgets
its initial condition before it hits the targets. To prove the
ε-flatness condition for a particular problem, one must make
this idea rigorous. Here are two examples of how this might
be done:

Theorem 2. (Examples of ε-flatness). Let B(x, r) =
{y:‖x − y‖ < r} denote the ball of radius r centered at x. Let
us say that a diffusion governed by Eq. (1) “behaves like
Brownian motion” on a set if σ (x) = I and ∇U (x) = 0 for
every x in that set.

(1) (Small targets) Fix r, ε > 0. We can then find r′ > 0
with the following property. For any bounded convex set �

with diameter less than or equal to 1, any xA, xB ∈ �, any
reversible stationary diffusion trapped inside � and behaving
like Brownian motion for all x /∈ B(xA, r′) ∪ B(xB, r′), and
any A ⊂ B(xA, r′), B ⊂ B(xB, r′), we have that hA,B is ε-flat
on �\(B(xA, r) ∪ B(xB, r)).

(2) (High dimensions) Fix r, ε > 0 and r′ < r. We can
then find n with the following property. For any convex set
� ∈ Rn with diameter less than or equal to 1, any xA, xB such
that B(xA, r),B(xB, r) ⊂ �, any reversible stationary diffu-
sion trapped inside � and behaving like Brownian motion
for all x /∈ B(xA, r′) ∪ B(xB, r′), and any A ⊂ B(xA, r′), B ⊂

B(xB, r′), we have that hA,B is ε-flat on �\[B(xA, r) ∪
B(xB, r)].

A proof can be found in Appendix B. The first example
shows how hitting probabilities become flat as the targets
become small. The second example notes that even if we fix
the radius of the targets, the hitting probabilities becomes flat
if the ambient dimension n is high. In both cases, the results
are proved by showing that the rate of mixing inside M is fast
relative to the time it takes to exit M.

IV. CAPACITY ESTIMATION VIA THE SHELL METHOD

To make use of Theorem 1 in practice, we must be able to
compute capacities. The calculation is local, in that cap(A, Ã)
is an integral on Ã\A. We will propose here a Monte Carlo
approach to evaluating the integral, using a combination of
analytic reductions and local sampling.

We begin by using an alternative formulation of the capac-
ity:

Proposition 1. For any regions G and G̃ having smooth
boundaries and such that A ⊂ G ⊂ G̃ ⊂ Ã, cap(A, Ã) can be
expressed as a flux leaving G̃\G:

cap(A, Ã) =
∫

∂ (G̃\G)
hA,Ãc (x)n(x)T a(x)∇hG,G̃c (x)

× e−U (x)H (dx), (4)

where a(x) = σ (x)σ (x)T is the diffusion matrix, H (dx) is
the (n − 1)-dimensional Hausdorff measure, and n represents
the outward-facing (relative to the set G̃\G) normal vector on
∂ (G̃\G).

(Results like this are well known, though perhaps not in
exactly this form. In any case, we have included a formal
proof, which can be found in Appendix D.)

There is a great deal of freedom in choosing G and G̃; the
idea is to choose them so as to make the surface integrals
as simple as possible. Each of these surface integrals can
be viewed as an expectation. Let H (dx) denote the n − 1-
dimensional Hausdorff measure. We can define a probability
measure on ∂G by

P (dx)
.= 1

Z
e−U (x)H (dx) where Z =

∫
∂G

e−U (x)H (dx).

We can define P̃ (dx) and Z̃ analogously, on ∂G̃ rather than
∂G. Then

cap(A, Ã) =
∫

∂G̃
hA,Ãcn

T a∇hG,G̃c e−U H (dx)

−
∫

∂G
hA,Ãcn

T a∇hG,G̃c e−U H (dx)

= Z̃
∫

∂G̃
hA,Ãcn

T a∇hG,G̃cP̃ (dx) − Z∫
∂G

hA,Ãcn
T a∇hG,G̃cP (dx), (5)
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where, in these integrals, the normal, n, points outward from
both G and G̃. Let y1, y2, . . . , ym ∼ iid P (dx), so that

1

m

m∑
i=1

hA,Ãc (yi )n
T (yi )a(yi )∇hG,G̃c (yi )

m→∞−→
∫

∂G
hA,Ãcn

T a∇hG,G̃cP (dx)

and

1

m

m∑
i=1

eU (yi ) m→∞−→
∫

∂G
eU P (dx) = |∂G|

Z
,

where |∂G| is the surface area of G. Putting these together, we
get the large n approximation

Z
∫

∂G
hA,Ãcn

T a∇hG,G̃cP (dx)

≈ |∂G|
∑m

i=1 hA,Ãc (yi )nT (yi )a(yi )∇hG,G̃c (yi )∑m
i=1 eU (yi )

.

If we now extend all of this to ∂G̃, with ỹ1, ỹ2, . . . , ỹn ∼
iid P̃ (dx), and put the approximations into (5), then for large
n and m,

cap(A, Ã) ≈ |∂G̃|
∑n

i=1 hA,Ãc (ỹi )nT (ỹi )a(ỹi )∇hG,G̃c (ỹi )∑n
i=1 eU (ỹi )

− |∂G|
∑m

i=1 hA,Ãc (yi )nT (yi )a(yi )∇hG,G̃c (yi )∑m
i=1 eU (yi )

.

(6)

In summary: we can use a Monte Carlo technique to
compute the capacity as long as we can (1) sample from
P (dx) and P̃ (dx), (2) compute the surface areas |∂G| and
|∂G̃|, (3) compute the first-passage probability hA,Ãc , and (4)
compute the gradient ∇hG,G̃c . We can often make tasks (1) and
(2) straightforward by a judicious choice of G, G̃. However,
tasks (3) and (4) are more difficult.

Thus, to compute the capacity using this approach, the
most difficult challenge is to compute the first-passage prob-
abilities along G, G̃. Broadly speaking there are two ap-
proaches for this kind of problem. First-passage probabilities
satisfy an elliptic PDE related to the infinitesimal generator
[see Appendix A, Eq. (A1)], and we could therefore choose
from a selection of numerical solvers. Here, in a different
direction, we exploit the connection between first-passage
probabilities and the underlying random walk in order to
develop Monte Carlo tools suitable for estimating both hA,Ãc

and ∇hG,G̃c on the surfaces ∂G and ∂G̃. These tools are
based on what we will call the “shell method,” which we
describe briefly in the following paragraphs and in full detail
in Appendix F.

Generically, given two simply connected regions R and
R̃, with R ⊂ R̃, and a set S such that R ⊂ S ⊂ R̃, we seek
an approximation to the function hR,R̃c on the surface ∂S. In
principle, we could begin with a fine-grained partitioning of
∂S into simply connected “cells,” and for each cell simulate
the diffusion many times, recording whether or not the path
first exits ∂ (R̃\R) at ∂R. The fraction of paths that first exit at
∂R constitutes an estimate of hR,R̃c (x) for any x in the current

cell. But this is wasteful and likely infeasible in all but the
simplest of settings. Much of the waste stems from the fact
that the ensemble of all paths generated from all cells will
likely include many near collisions of paths scattered through-
out ∂ (R̃\R). An alternative, divide-and-conquer approach, is
to introduce multiple sets, S0, S1, . . . , Sn such that

R = S0 ⊂ · · · ⊂ Sm−1 ⊂ Sm = S ⊂ Sm+1 ⊂ · · · ⊂ Sn = R̃

and use sample paths from X , locally, to estimate the transi-
tion probability matrices from each cell within each “shell”
∂Sk to each cell of its neighboring shells, ∂Sk−1 and ∂Sk+1.
Equipped with these transition matrices, the first-passage
probability for a given x ∈ S is computed algebraically, with-
out further approximation.

S must have been chosen not only to satisfy R ⊂ S ⊂ R̃
but also in such a way as to make it feasible to sample
from ∂S under the probability measure 1

Z e−U H (dx). After
that, Sk k = 1, . . . , n − 1 are chosen so that the shells nest
and are in close proximity; the hitting times starting from
a sample in ∂Sk and ending at ∂Sk−1 ∪ ∂Sk+1 must be short
enough to encourage many repeated runs. The output is a set
of samples, z1, . . . , zN ∼ 1

Z e−U H (dx) on ∂S together with
the approximate value of hR,R̃c (x) at each sample x = zi. [In
fact, though the main purpose is to estimate hR,R̃c on ∂S, a
byproduct is a sample from 1

Z e−U H (dx) on all of the shells
∂Sk , along with an estimate of hR,R̃c at every sample.] With the
choice of A for R and Ã for R̃, the algorithm becomes directly
applicable to the estimation of hA,Ãc on ∂G and ∂G̃, taking
S = G in the former case and S = G̃ in the latter.

The shell method is closely related to milestoning
[30,35,36] and Markov state models [26–28], though more
tailored to the problem at hand. In particular, our interest
here is in computing the first-passage probabilities rather
than in approximating the underlying process. Also, the dis-
cretizations of the shells are adaptive, in that they are based
on clusters that are derived from an ensemble of samples,
as opposed to being crafted for a particular landscape; see
Appendix F.

As for the required gradients, these are generally harder
to estimate. Nevertheless, for the particular gradient ∇hG,G̃c ,
the problem is substantially mitigated by noting that we are
interested only in its evaluation on ∂G and ∂G̃, each of
which is a level set of hG,G̃c (hG,G̃c = 1 on G and 0 on G̃).
Consequently, on each surface the gradient is in the normal
direction, and we need only estimate its magnitude. For this
purpose it is enough to know the values of hG,G̃c on a surface
close to G and interior to G̃\G (for estimating ∇hG,G̃c on G)
and on another surface close to G̃ and also interior to G̃\G
(for estimating ∇hG,G̃c on G̃). Two such surfaces would be ∂S1

and ∂Sn−1, were we to apply the shell method with R = G and
R̃ = G̃, since, as already noted, a by-product of the method
is an estimate of hR,R̃c on all of the shells. Alternatively,
in the interest of better accuracy, the method could be run
twice, once with S = S1, a well-chosen outer approximation
of G, and then again with S = Sn−1, a well-chosen inner
approximation of G̃.
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V. NUMERICAL EXPERIMENTS

We use numerical experiments to test the practical rele-
vance of our theoretical results and capacity-estimation algo-
rithm [37]. There several questions we would like to address
empirically: We used a series of experiments to investigate
the accuracy and computational efficiency of the proposed
approach to estimating first-passage probabilities. Three ques-
tions were addressed empirically, in each of several settings:

Is the first-passage probability function ε-flat? The capacity
approach to first-passage probabilities (Theorem 1) is predi-
cated on the assumption that hA,B(x) is ε-flat over a region that
is sufficiently removed from the immediate neighborhoods
of the targets. Theorem 2 gives asymptotic (small-target or
high-dimension) sufficient conditions. How quickly do these
asymptotic limits come into play? We estimated, numerically,
the extent of ε-flatness in each setting.

How tight are the bounds in Theorem 1? The theorem
guarantees that the first-passage probability function is within
ε + √

ε/2 of the probability determined by the target-capacity
ratios. We estimated the tightness of the bound in each setting.

Is the shell method accurate and computationally efficient?
Target capacities can rarely be computed analytically, and
hence the applicability of the capacity-based approach to
first-passage probabilities depends upon the accuracy and
computational efficiency of the shell method (Sec. IV). We
examined both in each of many settings.

We looked at problems of the following form. In every
case the configuration space, �, was the unit ball in R5. In
other words, � = B(0, 1), where B(x, r) � {y:||y − x|| < r}.
The diffusion was confined to � by a reflecting boundary at
∂�, and within � the dynamics were assumed to obey the
first-order (high-viscosity) Langevin equation,

dXt = −∇U (Xt ) dt + dWt , (7)

where Wt is an n-dimensional Brownian motion and U is
a potential energy. Although the method applies to multiple
targets (as noted earlier), the experiments involved only two,

A � B(xA, rA),

B � B(xB, rB).

Given an initial condition X0 ∈ �\(A ∪ B), we are inter-
ested in knowing whether the dynamics carry the system into
A or B first. We further assumed that U is constant beyond the
immediate neighborhoods of A and B: letting Ȧ = B(xA, rȦ)
and Ã = B(xA, rÃ) such that rA < rȦ < rÃ, and letting Ḃ =
B(xB, rḂ) and B̃ = B(xB, rB̃) such that rB < rḂ < rB̃, we as-
sumed that ∇U (x) = 0 for all x ∈ �\(Ȧ ∪ Ḃ). Our interest is
in estimating hA,B(x) over the region x = X0 ∈ � \ Ã ∪ B̃.

In order to establish good estimates for ground truth,
we ran a total of 400 000 simulations of (7) until the first
passage to A or B, in each of six experiments. This was
greatly facilitated by the assumption that ∇U (x) = 0 outside
of Ȧ ∪ Ḃ, since we could use the “walk-on-spheres” method
(cf. Ref. [38]) for the corresponding portions of the trajectory.

We considered two broadly different variations of the
setup: one (Brownian diffusion) in which the exact target
capacities could be computed, thereby allowing for a direct
assessment of the accuracy of the shell method, and the other

involving complex energy landscapes in the neighborhoods of
the targets. In the latter case, the accuracy of the capacity
estimates could only be inferred from the accuracy of the
resulting estimates of first-passage probabilities.

A. Brownian diffusion

The first set of experiments tested the capacity-based
approach in the simplest possible case: U (x) = 0 for all x
outside of the targets. The target centers were fixed at xA =
(0.5, 0.6, 0.0, 0, 0, 0.0) and xB = (−0.7, 0.0, 0.0, 0, 0, 0.0),
the radii rÃ and rB̃ were fixed at 0.2, and the radii rA

and rB were varied across three conditions. These were
defined as “small targets” (rA = 0.02, rB = 0.04), “medium
targets” (rA = 0.05, rB = 0.075), and “large targets” (rA =
rB = 0.15). The three cases are illustrated, along with the
corresponding results, in Fig. 2. (In light of the assumption
U (x) = 0, the particular values of rȦ and rḂ are irrelevant
in this set of experiments, though not in the next set; see
Sec. V B.)

Each of the three questions raised earlier (Is the first-
passage probability function ε-flat? How tight are the bounds
in Theorem 1? Is the shell method accurate and computation-
ally efficient?) was explored for each of the three target sizes.

1. Is the first-passage probability function ε-flat?

Theorem 2, although an asymptotic result, suggests that
the variability of the first-passage probabilities will decrease
with target size. To investigate this relationship we conducted
2000 diffusion simulations at each of 100 randomly selected
initial conditions, X0 ∈ � \ Ã ∪ B̃. These simulations yielded
100 well-estimated hitting probabilities. The histograms of
these probabilities are displayed in Fig. 2. As the targets
become smaller, the histograms become more peaked. A crude
estimate of the flatness of hA,B(x) is the spread of the 100
estimated probabilities:

(1) ε ≈ 0.0295 for the small targets
(2) ε ≈ 0.0420 for the medium targets
(3) ε ≈ 0.1060 for the large targets.
In other words, the dependency of the hitting probability on

the initial condition decreases with target size, as anticipated.

2. How tight are the bounds in Theorem 1?

If we were to take these estimates of ε-flatness and apply
Theorem 1, as though they were precise measurements, then
we would conclude that

sup
x/∈Ã,B̃

|hA,B(x) − pA| � ε +
√

ε/2, (8)

where

pA � cap(A, Ã)

cap(A, Ã) + cap(B, B̃)
(9)

and ε + √
ε/2 = 0.0295 + √

0.0295/2 ≈ 0.15 for the small
targets, and 0.19 and 0.34 for the medium and large targets,
respectively.

In this special case, in which the diffusion is just a Brow-
nian motion outside of the targets, the capacities can be

023304-6



CAPACITIES AND EFFICIENT COMPUTATION OF … PHYSICAL REVIEW E 102, 023304 (2020)

FIG. 2. Capacities and first-passage probabilities: Brownian motion. We consider three different cases (small, medium, and large), as
illustrated on the left side. In each case we have two targets and are interested in the probability that a Brownian motion will first encounter
target A before target B. We consider 100 random initial locations, confined to be outside of the small black circles. For each location, we use
2000 runs of the diffusion to estimate the probability of hitting target A before B. We plot these 100 estimates as a histogram. The histograms
reveal that the hitting probabilities fall within a narrow range (0.0295, 0.0420, 0.1060 for small, medium, and large targets, respectively),
especially when the targets are small. Moreover, we see that the location of this narrow range can be accurately predicted by the capacity-based
approximation in Theorem 1 [pA from Eq. (9), shown as a dotted red line, 0.1104, 0.2219, 0.5000 for small, medium, and large targets,
respectively]; the capacity-based approximation, derived from purely local computations within the neighborhoods of the targets, always falls
inside the span of the histogram. We can further compare the capacity-based value to an estimate of the mean hitting probability for a process
initialized at a random location, which is just the relative frequency of hitting A before B in 200 000 additional simulations from random initial
conditions (shown as a solid red line, 0.0975, 0.2223, 0.4903 for small, medium, and large targets, respectively.)

computed exactly via the formulas

cap(A, Ã)= 6π
5
2


( 5
2 )
(
r−3

A − r−3
Ã

) , cap(B, B̃)= 6π
5
2


( 5
2 )
(
r−3

B − r−3
B̃

) ,
(10)

which are easily derived using the representation in equation
(4), established in Proposition 1. Together with (9), we then
get the following formula for the corresponding probabilities:

pA =
1

r−3
A −r−3

Ã

1
r−3

A −r−3
Ã

+ 1
r−3

B −r−3
B̃

,

which evaluates to 0.1104, 0.2219, and 0.5, respectively for
the small, medium and large targets. These capacity-based
estimates are indicated in Fig. 2 by the dotted red lines, which
are superimposed on the corresponding histograms of the 100
empirically derived probabilities.

To the extent that the range of the 100 well-estimated
hitting probabilities (2000 samples of the diffusion starting
at each of the 100 randomly selected starting locations) is
a reasonable estimate of the ε-flatness, for a given pair of
targets, we are now in a position to evaluate the accuracy of the
bound guaranteed by Theorem 1, i.e., the bound in equation
(8). In particular, in each of the three examples depicted in
Fig. 2 the value of pA (dotted red line) lies within the range of
the corresponding histogram. Therefore, in each of the three
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TABLE I. Accuracy of the shell method: Brownian motion. There are thee pairs of targets, labeled small, medium, and large. The target
capacities, which can be calculated exactly for Brownian motion, are entered in the first row. The second row contains the corresponding
estimates derived by the shell method (cf. Sec. IV). According to Theorem 1, pA (9) is an estimate of the probability that the first passage
occurs at A, accurate to within an error of ε + √

ε/2. The exact values of pA are entered in the third row, and the estimated values, derived
from the estimated capacities, are in the fourth row.

Targets Small Medium Large

(cap(A, Ã), cap(B, B̃)) (0.000632,0.005094) (0.010026,0.035164) (0.460937,0.460937)
(ĉap(A, Ã), ĉap(B, B̃)) (0.000549,0.004699) (0.009308,0.033625) (0.452441,0.451537)
pA 0.1104 0.2219 0.5000
p̂A 0.1091 0.2168 0.5005

examples, the maximum error is smaller than our estimate of
ε itself. For these examples, the theoretical bound appears to
be fairly loose—in each case ε + √

ε/2 could be replaced by
ε, which comes to 0.0295 instead of 0.15 for the small targets,
and 0.0420 instead of 0.19 and 0.1060 instead of 0.34 for
the medium and large targets. Possibly, the asymptotic bound
(ε → 0), which is not addressed by Theorem 1, is dominated
by ε rather than

√
ε.

3. Is the shell method accurate and computationally efficient?

As noted in Sec. V A 2, the special assumptions in these
examples allow us to compute the exact capacities, according
to Eq. (10). Hence we can directly measure the accuracy of
the approximations computed with the shell method.1 Table I
summarizes the results for each of the three target sizes. By
Theorem 1, the capacities enter into an approximation of first-
passage probabilities through pA, as defined in Eq. (9). The
third and fourth rows of the table give the exact values of pA

and the corresponding values derived from the shell-estimated
capacities, respectively. The differences are small relative to
the spread of first-passage probabilities and, in particular, each
of the estimated values lies comfortably within the range of
estimated probabilities (cf. Fig. 2). The shell method does not
introduce any significant additional error for these problems.

Turning now to the question of computational efficiency,
how fast is a capacity-estimation approach when compared
against a simulation-based approach? There are of course
many variables that might affect the comparison, including
the dimension and the details of the energies, not to mention
the implementation details. In our experiments with direct
simulations, we used the “walk-on-spheres” method to sim-
ulate trajectories in the flat region [38], JIT compilation to
remove loop overhead, multi-CPU parallelization, and the
coarsest time step that yielded accurate results. (In that the
walk-on-spheres method requires a flat energy landscape and
Theorem 1 does not, our inferences about computational
efficiency are, in this regard, somewhat tilted in favor of the
simulation approach.) As for capacity estimation, we made no
effort to adjust the number of samples or the discretization
parameters.

In both the Brownian-motion experiments discussed in
this section and the experiments with nontrivial landscapes

1With reference to Appendix F, the following parameters were
used to implement the shell method: m = 2, n = 4, Np = 100, Nb =
3, Ns = 1000, and a time step of 10−7.

discussed in the next section, we observed that a single run
of direct simulation took about as long as estimating two
capacities using the shell method, i.e., as long as it takes
to compute the capacity-based estimate of the first-passage
probability. With this benchmark in hand, the comparison of
the two approaches comes down to the question of accuracy:
How many direct simulations would be needed to compute the
first-passage probability to within an accuracy comparable to
what was obtained using capacities?

A single simulation run produces a single Bernoulli
variable—one if target A is encountered before target B, and
zero otherwise. The total number of ones, then, in a sequence
of independent simulations will have a binomial distribu-
tion. Hence, given any probability p of the Bernoulli event
“one,” and any desired accuracy δ, the number of independent
simulations needed to achieve a confidence interval of size
δ, with 95% confidence, is about n(δ) = 4 p(1−p)

δ2 .2 Since a
single simulation run takes about as long as our capacity-
based estimation for pA, we can assert that in this sense the
capacity-based estimation is approximately n = n(δ) times
more efficient.

What is a reasonable value of δ? Here are two points of
view, leading to similar estimates of n:

(1) Let p̂A be the capacity-based estimate of first en-
countering A after starting at a given location x ∈ � \ Ã ∪ B̃
(indicated, for each of the three experiments, by the dotted
red line in Fig. 2), and recall that hA,B(x) represents the
actual probability, which in general depends on the starting
location, x. Keep in mind that the capacity-based estimator
is independent of x. If the starting location were chosen
randomly, then an unbiased estimator of the mean absolute
error, E[|hA,B(X ) − p̂A|], for a given value of p̂A, is obtained
by taking expectation with respect to the empirical probability
distribution, which is displayed in the figure by a histogram
for each target size. The resulting three estimates, for the
small, medium, and large targets, of the mean absolute errors
are 0.0127, 0.0080, and 0.0167, respectively. From this point
of view (i.e., using these three values for δ), the number of
simulation runs from a given location x needed to achieve
an error approximately equal to the mean absolute error of

2In principle, the value of p depends on the starting location.
But in light of the tight clustering of first-passage probabilities (ε-
flatness), we used the mean value obtained from 200 000 samples at
random starting locations, which is designated “mean of simulated
probabilities” in the figures, for all calculations of sample sizes.
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the capacity method, and hence the computational advantage
of the capacity method, is about 2000 for the small targets,
10 000 for the medium targets, and 3500 for the large targets.

(2) Suppose, instead, that the goal is to estimate the mean
first-passage probability, i.e., the average over all starting
locations x ∈ � \ Ã ∪ B̃. For each of the three target sizes, we
used 200 000 simulation runs, each one initiated at an inde-
pendent and randomly chosen starting location, and recorded
the relative frequencies with which target A was reached be-
fore target B. The resulting estimates of the mean first-passage
probabilities are reported in the figure and indicated by the
solid red lines in the histograms. The difference between
these means and the capacity-based probabilities (the distance
between the red and dotted-red lines) is an approximation of
the accuracy of the capacity-based approach in estimating the
mean first-passage probabilities. We used these differences
as δ, but slightly corrected (made larger) to account for the
binomial approximation error associated with a sample size of
200 000 (i.e., corrected for the estimation of the mean in the
first place). In this way we estimate a computational advantage
for the capacity-based method to be about 2000-fold for the
small targets, 400 000 for the medium targets, and 8000 for
the large targets.

B. Nontrivial landscape

In the second set of experiments the targets A and
B were only partially contained in �, and the en-
ergy landscape U was nontrivial. We fixed the target
centers at xA = (0.6402, 0.7682, 0.0, 0, 0, 0.0) and xB =
(−1.0, 0.0, 0.0, 0, 0, 0.0), and the outer radii at rÃ = rB̃ =
0.5. We investigated three different cases with targets of
different sizes: small (where rA = 0.02, rȦ = 0.05, rB = 0.04,
and rḂ = 0.075), medium (where rA = 0.1, rȦ = 0.15, rB =
0.2, and rḂ = 0.25), and large (where rA = rB = 0.45 and
rȦ = rḂ = 0.475). The specifications of the energy functions
can be found in Appendix G. Illustrations of the three set ups
and corresponding results are shown in Fig. 3. We will now
revisit the three issues discussed in the previous examples, but
in the context of the more complex landscapes surrounding
the targets.

1. Is the first-passage probability function ε-flat?

Following the same procedures used in Sec. V A 1, we
estimated ε-flatness from the spreads of the probability
histograms:

(1) ε ≈ 0.0530 when the targets are small
(2) ε ≈ 0.0495 when the targets are medium
(3) ε > 0.75 when the targets are large.
In the third example, the first-passage probability function

hA,B(x) can hardly be called flat. Evidently, the large targets
are not subject to the asymptotic guarantees offered in The-
orem 2. In this circumstance, Theorem 1 is irrelevant, and
therefore we will discuss the remaining questions only in the
context of the small and medium targets.

2. How tight are the bounds in Theorem 1?

In other words, how large is supx |hA,B(x) − pA| on � \ Ã ∪
B̃ compared to ε + √

ε/2? For Brownian motion (Sec. V A),

the capacities were derivable analytically [Eq. (10)], which
led to a closed-form expression for pA. Here, we followed
the same reasoning as in Sec. V A 2 to get an approximation
of the tightness of the theorem’s bound, but replaced pA

by p̂A, the estimate computed from the shell method. The
resulting value of p̂A, for each target size, is displayed in
Fig. 3 as a dotted red line superimposed on the target-
probability histogram. For both the small and medium targets,
the estimated hitting probability lies within the range of the
100 sampled probabilities, as it did in the case of Brownian
motion. Reasoning as we did there, these observations suggest
that the true error may be better approximated by ε rather than
the ε + √

ε/2 guarantee given in the theorem. Specifically,
the magnitudes of the ranges, 0.0530 and 0.0495, respectively,
serve as ballpark upper bounds on the estimation errors for the
first-passage probabilities for the small and medium targets.

3. Is the shell method accurate and computationally efficient?

How accurate is the shell method in these cases?
In the absence of a closed-form expression for the capacities,
we are forced to rely on an indirect measure. In Sec. V B 2 we
used the shell method to estimate capacities and used those
capacities to get hitting-probability estimates. These were
in good agreement with the results obtained from 200 000
runs of simulated diffusions (2000 from each of 100 random
starting points). This, then, constitutes indirect evidence for
the accuracy of the shell method, but with the important
proviso that the estimated hitting probabilities depend only
on the ratio of the (estimated) capacities, and not on the
capacities themselves.

To assess computational efficiency, we repeated the ap-
proach used for Brownian motion, step by step as laid out
in Sec. V A 3. As noted there, one simulation run is nearly
the same as using the shell method to estimate pA, in terms
of computational cost. Therefore, efficiency comparisons be-
tween the shell method (capacity-based) approach and direct
simulation come down to computing the number of simulation
runs required to achieve comparable accuracy in estimating
first-passage probabilities. In Sec. V A 3 we explored two
interpretations of accuracy, which we repeat here, but using
instead the results reported in Fig. 3:

(1) For each target size (small and medium) and corre-
sponding value of p̂A, we used the probability histogram
to estimate E[|hA,B(X ) − p̂A|], the mean absolute error of
the capacity-based method. The resulting accuracy measures
came to 0.0078 for the small targets and 0.0095 for the
medium targets. Then, using the respective probabilities of
0.8217 and 0.3893 (solid red lines), we conclude that in
each case about 10 000 simulation runs would be needed to
achieve an accuracy comparable to capacity-based approach.
In this sense, the capacity approach, based on shell-method
estimates, is about 10 000-fold more efficient than direct
simulation.

(2) In the second interpretation, we consider the problem
of estimating the mean first-passage probability for a ran-
domly chosen starting position (approximately 0.8154 for the
small targets and 0.3893 for the medium targets, based on
200 000 independent random samples). Errors in the capacity-
based approach were about 0.0072 and 0.0089, which come
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FIG. 3. Capacities and first-passage probabilities: nontrivial energy landscapes. See Fig. 2. The setup here is the same except that the
targets A and B are only partially contained in �, and the energy landscapes become complicated near the targets. The histograms show that
the first-passage probabilities are largely independent of starting location for the small and medium targets, as they were in the previous set of
experiments. In contrast, the first-passage probabilities for the large targets depend strongly on starting location. This is expected, since these
targets are substantially larger than the corresponding targets from the previous experiments. (The size difference is even bigger than it might
appear, given that these figures represent two-dimensional slices of a five-dimensional region.) In contrast to the Brownian motion examples,
the complex landscape in these examples precludes an exact evaluation of pA [Eq. (9)]. Hence the dotted red line represents the estimated
value, p̂A, computed using the shell method (cf. Fig. 2). Nonetheless, these estimates fall within the span of the respective histograms in all
three examples. For small, medium, and large targets, the ranges of the 100 hitting probabilities are 0.0495, 0.0530, 0.6430, respectively;
the capacity-based hitting probabilities (dotted lines) are 0.8217, 0.3815, 0.5219, respectively; the mean hitting probabilities (solid lines),
estimated using 200 000 additional simulations from random initial conditions, are 0.8154, 0.3893, 0.5069, respectively.

from the differences in the positions of the red and dotted-
red lines, but inflated to account for the expected sampling
error when using a sample of size n = 200 000. Comparable
accuracies would require about 12 000 simulation runs, for
each of the small and medium targets. Hence, from this point
of view, we would estimate that the capacity-based approach
is about 12 000-fold more efficient than direct simulation.

VI. SUMMARY AND DISCUSSION

If a first-passage probability is nearly the same for
every initial condition in a region M, then it can be
well-approximated in terms of certain integrals. We dub these
integrals the “first-passage capacities.” These capacities can
be approximately computed using a milestoning-like tech-

nique, as described in Sec. IV. In Theorem 1 we show that
the error introduced by this approximation is small whenever
hitting probabilities are sufficiently similar across different
initial conditions inside a large region, M. When this condition
holds, we say that the hitting probabilities are “ε-flat,” where
the coefficient ε bounds how much the hitting probabilities
vary over the initial conditions. Under what circumstances are
hitting probabilities similar for all initial conditions in a large
region, M? Theorem 2 provides some sufficient conditions,
though the concept is more general and we would expect
some form of ε-flatness to hold anytime the mixing rate
of the diffusion is fast relative to the typical escape time
from M.

The capacity of a given target is local, in the sense that
the capacity integral is over a region in the neighborhood
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of the target. We have devised a Monte Carlo approach to
estimating capacities that we call the shell method (Sec. IV).
In Sec. V we provide evidence for the accuracy and com-
putational efficiency of using estimated capacities and The-
orem 1 to compute first-passage probabilities. In a series
of computational experiments we compared our capacity-
based approach to the direct estimation of hitting probabil-
ities using repeated runs of the diffusion. In each of these
experiments, repeated simulation required at least three or-
ders of magnitude more computation to achieve comparable
accuracy.

We were motivated by the narrow-escape problem, and in
particular the potential connection to modeling the folding of
large molecules. To the extent that folding can be thought of
as a series of discrete steps, each requiring a rate-limiting
search for new connections in a large conformational space
[9–13], it might be possible to sidestep the exploratory phases
by computing first-passage probabilities—one for each poten-
tial connection. An example might be the sequence of stem
formations in the folding of structural RNA molecules. The
idea would be to model the creation of each new stem as the
outcome of a first-passage problem, defined by the already
established stems. Not only does the search, as opposed to
the stem creation, have to be the rate-limiting step, but it
must be slow enough to allow for the hitting probabilities to
be nearly independent of the starting configuration. But the
larger problem would be the possibility of the dissolution of
an existing stem. RNA folding is not necessarily monotonic;
stems come and go. Which will come first, the undoing of
an existing stem or the creation of a new one? Unless the
undoing of a stem could be formulated as itself a target or
some kind of narrow escape, we would be forced to confront
the problem of estimating first-passage times in addition to
probabilities.

In general, it may turn out that estimating first-passage
times is profoundly more difficult than estimating first-
passage probabilities. In this work we showed that the first-
passage probabilities are sometimes invariant to the diffusion
dynamics on the interior of a large set M, but the first-
passing times will admit no such invariance. If the dynamics
inside of M are genuinely intricate, it appears that estimating
hitting times will always require a correspondingly intricate
analysis.
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APPENDIX A: THREE PERSPECTIVES ON
HITTING PROBABILITIES

Many of our results are based on the fact that hitting prob-
abilities can actually be seen from three distinct perspectives.
To prepare for these results, we take a moment to review
these three perspectives here. Let A, B ⊂ �, disjoint, open
with smooth boundary.

(1) Hitting probabilities: Let τS � inf{t :Xt ∈ S} for any set
S and hA,B(x) � P (XτA∪B ∈ ∂A|X0 = x).

(2) Elliptic equation: Let hdir
A,B(x) denote the solution to the

partial differential equation

0 =
n∑

i=1

bi(x)
∂u(x)

∂xi
+ 1

2

n∑
i=1

n∑
j=1

ai j (x)
∂2u(x)

∂xi∂x j
x /∈ Ā, B̄,

1 = u(x), x ∈ A,

0 = u(x), x ∈ B,

0 = n(x)T a(x)∇u(x), x ∈ ∂�. (A1)

This solution is unique and smooth [39]. What’s more, it is
equal to the hitting probability function: hdir

A,B(x) = hA,B(x) (cf.
Sec. 6.7 of Chen [40]).

(3) Variational form: For any open set S ⊂ � let
ES ( f , g) �

∫
S ∇ f (x)T a(x)∇g(x)ρ(dx) denote the “Dirichlet

form” of f , g on the domain S. Let L 2(S, ρ) denote the
Hilbert space of functions on S which are square-integrable
with respect to ρ. Let H1(S, ρ) = W 1,2(S) ⊂ L 2(S) denote
the corresponding once weakly differentiable Hilbert-Sobolev
space. We define hvar

A,B(x) as the solution to

min
u∈H1(S)

ES (u, u)

subject to u(x) = 1, x ∈ ∂A

u(x) = 0, x ∈ ∂B,

where S = �\(A ∪ B). This solution is unique and equal to
hdir

A,B on S (cf. Sec. 4 of Dret [41]). This variational perspective
leads us to the notion of the “condenser capacity” associated
with hA,B. It is defined as

cap(A,�\B) � ES (hA,B, hA,B),

where again S = �\(A ∪ B) = (�\B)\A.
We will use all three of these perspectives to show our

results. For example, consider how the hitting probability
perspective helps us show a result about capacities:

Proposition 2. Let A ⊂ Ã, B ⊂ B̃ with Ã, B̃ disjoint. Then

cap(A ∪ B, Ã ∪ B̃) = cap(A, Ã) + cap(B, B̃).

Proof. This result is certainly known, but we include a
proof here because we were unable to find a proof in the
literature. Since Ã, B̃ are disjoint and X is continuous, the
process cannot cross from one to the other without hitting
the boundary. Thus we have τ∂Ã∪∂B̃∪∂A∪∂B = τ∂Ã∪∂A as long as
X0 ∈ Ã. We get a symmetric result if X0 ∈ B̃. It follows that

hA∪B,(Ã∪B̃)c (x) =
{

hA,Ãc (x) if x ∈ Ã
hB,B̃c (x) if x ∈ B̃

.

We can now use this probabilistic perspective to help us
understand the capacity by articulating it as the Dirichlet form
on the relevant hitting probability functions

cap(A ∪ B, Ã ∪ B̃) =
∫

Ã∪B̃\(A∪B)
‖σ∇hA∪B,(Ã∪B̃)c‖2ρ(dx)

=
∫

Ã\A
‖σ∇hA,Ãc‖2ρ(dx)

+
∫

B̃\B
‖σ∇hB,B̃c‖2ρ(dx)

= cap(A, Ã) + cap(B, B̃)

as desired. �
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APPENDIX B: PROOF OF THEOREM 2

Theorem 2. (Examples of ε-flatness). Let B(x, r) =
{y:‖x − y‖ < r} denote the ball of radius r centered at x. Let
us say that a diffusion governed by Eq. (1) “behaves like
Brownian motion” on a set if σ (x) = I and ∇U (x) = 0 for
every x in that set.

(1) (Small targets) Fix r, ε > 0. We can then find r′ > 0
with the following property. For any bounded convex set �

with diameter less than or equal to 1, any xA, xB ∈ �, any
reversible stationary diffusion trapped inside � and behaving
like Brownian motion for all x /∈ B(xA, r′) ∪ B(xB, r′), and
any A ⊂ B(xA, r′), B ⊂ B(xB, r′), we have that hA,B is ε-flat
on �\(B(xA, r) ∪ B(xB, r)).

(2) (High dimensions) Fix r, ε > 0 and r′ < r. We can
then find n with the following property. For any convex set
� ∈ Rn with diameter less than or equal to 1, any xA, xB such
that B(xA, r),B(xB, r) ⊂ �, any reversible stationary diffu-
sion trapped inside � and behaving like Brownian motion
for all x /∈ B(xA, r′) ∪ B(xB, r′), and any A ⊂ B(xA, r′), B ⊂
B(xB, r′), we have that hA,B is ε-flat on �\[B(xA, r) ∪
B(xB, r)].

Proof. Let Ȧ = B(xA, r′), Ḃ = B(xB, r′). Let {Zt }t denote
a Brownian motion trapped inside � and coupled to X such
that Xt = Zt for all t � τ = {inf t :Xt ∈ Ȧ ∪ Ḃ} (we can do this
because we assumed that X behaves like Brownian motion
outside of Ȧ, Ḃ). Let Z∞ denote the stationary distribution of
Z , i.e., the uniform distribution on �. Using Lemma 1, we
have that

|E[hA,B(Zt ) − hA,B(Z∞)|Z0 = x]| � 1

t
∀x.

On the other hand, Dynkin’s formula gives that

hA,B(x) = E[hA,B(Zτ∧t )|Z0 = x] ∀t, x.

Putting those two facts together:

|hA,B(x) − E[hA,B(Z∞)]|
= |E[hA,B(Zτ∧t ) − hA,B(Z∞)|Z0 = x]|
� |E[hA,B(Zτ∧t ) − hA,B(Zt )|Z0 = x]|

+ |E[hA,B(Zt ) − hA,B(Z∞)|Z0 = x]|

� P (τ � t |Z0 = x) + 1

t
.

To make this small, it thus suffices to get t large but keep
P (τ � t ) small. In short, it suffices to show that τ is usually
big. We prove this differently in the two different cases:

(1) The first example follows because the targets are van-
ishing into nothing, so it is no surprise that the time to hit
the targets will get longer and longer. However, note that this
intuition is valid only because the ambient dimension n is at
least three (which we have assumed throughout). A formal
proof of this argument can be found in Lemma 2.

(2) The second example is similar; even though the targets
maintain the same diameter, their relative volume is van-
ishing because the ambient dimension n is increasing. Thus
the targets are effectively becoming smaller, so the hitting
time increases. This matter is a bit trickier, and so for this
second case note we have made additional requirements that

B(xA, r),B(xB, r) ⊂ �. A formal proof of this argument can
be found in Lemma 3. �

Lemma 1. (Uniform ergodicity) Let � ⊂ Rd be a convex
set with diameter ξ and let M denote a Brownian motion
trapped by reflecting boundaries inside �. The distribution
of Mt converges uniformly to the uniform distribution, in the
sense that

sup
f : �→[0,1]

|E[ f (Mt )− f (Z )|M0 = x]|�ξ 2/4t, ∀x ∈ �, t > 0,

where Z is uniformly distributed on �.
Proof. Per Loper [42],

sup
f : �→[0,1]

|E[ f (Mt ) − f (Z )|M0 = x]| � P(τ > 4t ),

where τ is the first exit time of a one-dimensional Brownian
motion from the interval [−ξ, ξ ] when initialized at the origin.
Dynkin’s formula gives that E[τ ] = ξ 2. Hence, by the Markov
inequality, P(τ > 4t ) � ξ 2/4t . �

Lemma 2. Let Z denote a Brownian motion trapped inside
a convex bounded open set � ⊂ Rn with smooth boundary.
We further assume that n � 3. Fix x ∈ Rn and r, ε > 0. Let τA

denote inf{t :Zt ∈ A} for any set A. We can always find r1 > 0
such that P (τA < 1/ε|Z0 = z) < ε for all z /∈ B(x, r3) and all
A ⊂ B(x, r1).

Proof. First consider the case that x ∈ �. To measure the
time it takes to hit B(x, r1), we will make use of two additional
concentric spheres around x. First, find r3 such that B(x, r3) ⊂
�. Second, let r2 = √

r1r3, an intermediate radius. We will
use these spheres to break the trajectory of Z into smaller
manageable pieces. If ‖Z0 − x‖ > r3, the first part of the
trajectory must carry it to a radius of r2 before it reaches r1.
The next part of the trajectory will then do one of two things:
either it will carry on to r1, or it will first exit the ball of radius
r3. Assuming it exits the ball of radius r3, the strong Markov
property can be used to show that we are essentially in the
same place we started. Under this latter condition, the total
time will be the the time we’ve spent so far plus a new variable
which has the same properties as the original time. We can use
this recursive relation to put a lower bound on the overall time.

Let us make this rigorous. To measure the tails of τ , we
will be interested in

g(z) = E[e− 1
2 τ |Z0 = z].

To get a lower bound on the moments of τ , we need to get an
upper bound on this object. To do so, we will use two objects
of interest:

g3 = sup
z: ‖z−x‖=r3

g(z),

g2 = sup
z: ‖z−x‖=r2

g(z),

using two stopping times of interest:

T2 = inf{t :‖Zt − x‖ = r2},
T3 = inf{t > T1:‖Zt − x‖ = r3}.
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Applying the strong Markov property, we observe that

g2 = sup
z: ‖z−x‖=r2

E[E[e− 1
2 τ |ZT3∧τ ]|Z0 = z]

= sup
z: ‖z−x‖=r2

E[e− 1
2 T3∧τ g(ZT3∧τ )|Z0 = z]

� sup
z: ‖z−x‖=r2

E[e− 1
2 T3 g3IT3<τ + e− 1

2 τ IT3>τ |Z0 = z].

On the other hand, applying the continuity of Brownian
motion we have that T2 < τ whenever Z0 lies outside the ball
of radius r2, so

g3 = sup
z: ‖z−x‖=r3

E[e− 1
2 T2 g(T2)|Z0 = z] � g2.

So in fact

g3 � sup
z: ‖z−x‖=r2

E[e− 1
2 T3IT3<τ g3 + e− 1

2 τ IT3>τ |Z0 = z],

g3 �
supz: ‖z−x‖=r2

E[e− 1
2 τ IT3>τ |Z0 = z]

1 − supz: ‖z−x‖=r2
E[e− 1

2 T3IT3<τ |Z0 = z]
= L.

To calculate this upper-bound L, defined above, Wendel
gives explicit formulas (cf. Ref. [43]). We caution that in this
document a somewhat nonstandard notation is used, namely
Wendel uses E[A; B] to indicate E[A × IB]. For any z with
‖z − x‖ = r2, Wendel uses the symmetry of the problem to
show that

E[e− 1
2 τ IT3>τ |Z0 = z] =

(
r1

r2

)h I (r3)K (r2) − I (r2)K (r3)

I (r3)K (r1) − I (r1)K (r3)
,

E[e− 1
2 τ IT3<τ |Z0 = z] =

(
r3

r2

)h I (r1)K (r2) − I (r2)K (r1)

I (r1)K (r3) − I (r3)K (r1)
,

where h = (n − 2)/2 and I, K denote the modified Bessel
functions of order h. This leads to the following explicit
formula for L:

L =
( r1

r2

)h
(I3K2 − I2K3)

I2K1
[ I3

I2
− ( r3

r2

)h]+ I1K2
[( r3

r2

)h − K3
K2

] , (B1)

where we denote I1 = I (r1), K1 = K (r1), I2 = I (r2), and so
on. To prove our result, it thus suffices to show we can drive
L to zero by taking n sufficiently large.

The numerator of L in Eq. (B1) converges to zero as r1 →
0, because r1

r2
→ 0, h > 0 and the other terms are constant. On

the other hand, the denominator explodes, because as r1 → 0
we have [

I3

I2
−
(

r3

r2

)h
]

K1I2 → +∞,

[(
r3

r1

)h

− K3

K2

]
I1K2 → 0.

These limits follow immediately from three properties of
Bessel functions:

(1) K (x) → ∞, I (x) → 0 as x → 0 for h > 0,

(2) K (x), I (x) > 0 for x > 0, h > 0,

(3) I (y)
I (x) > ( y

x )h for y > x and h > 0.

The first two properties are well known and can be found
in DLMF (cf. Ref. [44]); the second can be found in Baricz
(cf. Refs. [44,45]). In conclusion, since the numerator van-
ishes and the denominator explodes, we have that overall L
vanishes. Applying a Chernoff bound, we have our result for
the case that x ∈ �.

What happens if x is not in the closure of �? Then by
taking r1 sufficiently small we can ensure that A ∩ � = ∅, so
τ = ∞. Thus the result is proved automatically.

What if x is precisely on the boundary of �? Here we
must use the smoothness of the boundary of �. By picking
r3 sufficiently small, the smoothness guarantees that � is
arbitrarily well approximated by a half-plane when restricted
to a ball B(x, r3). In this half-plane case, identical arguments
to the ones above can be used to argue that we can always
take a r1 that is yet smaller than r3 and ensure that the
hitting time is arbitrarily long. Finally, to account for the slight
discrepancy between the half-plane case and the actual case
for some finite r3, we appeal to the continuity of the Poisson
equation which governs g with respect to boundary condition
(cf. Ref. [46]). �

Lemma 3. Fix 0 < ε and 0 < r1 < r3. Then we can al-
ways find an n with the following property. Pick any open
set � ∈ Rn, any x satisfying B(x, r3) ⊂ �, and any x0 /∈
B(x, r3). Consider a Brownian motion Z trapped inside �

by reflecting boundaries and let τ denote the first hitting
time of the process to B(x, r1). Our choice of n guarantees
that

P (τ < 1/ε|Zt = x0) � ε.

Proof. Following the same arguments found in Lemma 2,
we again obtain that E[e−τ/2|Z0 = x0] is bounded by

L =
( r1

r2

)h
(I3K2 − I2K3)

I2K1
[ I3

I2
− ( r3

r2

)h]+ I1K2
[( r3

r2

)h − K3
K2

] . (B2)

To show our proof, it thus suffices to show we can drive this
quantity to zero and then apply a Chernoff bound.

Let us first look at the numerator of L in Eq. (B1). Asymp-
totics from the DLMF give that as h → ∞ we have

I (x) ∼ xh

2h
(h + 1)
, K (x) ∼ 2h
(h + 1)

(2h)xh
.

Here by f1(h) ∼ f2(h) we mean “asymptotic equivalence,”
i.e., limh→∞ f1(h)/ f2(h) = 1. Plugging these in, we see that
both terms in the numerator are asymptotically vanishing.

Now let us turn to the denominator. Using the asymptotic
formula above, we first note that(

r3

r2

)h

I1K2 ∼ 1

2h

(
r3r1

r2
2

)h

= 1

2h
→ 0,

−K3

K2
I1K2 ∼ − 1

2h

(
r1

r3

)h

→ 0.

So those terms are negligible. However, the other two terms
of the denominator are in fact exploding: one to positive in-
finity and one to negative infinity. To understand this delicate
balance, we these we turn to Lemma 4. Applying this Lemma
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and the asymptotics of the DLMF, we obtain that[
I3

I2
−
(

r3

r2

)h
]

K1I2 � rh
3

�I2
× r2

3 − r2
2

2h+2
(h + 2)
K1�I2

∼ rh
3 × r2

3 − r2
2

2h+2
(h + 2)

2h
(h + 1)

2hrh
1

=
(

r3

r1

)h[ r2
3 − r2

2

8h(h + 1)

]
,

which is indeed exploding to positive infinity as h = (n −
2)/2 → ∞.

Thus, since the numerator vanishes and the denominator
explodes to positive infinity, we have that L vanishes as n →
∞. �

Lemma 4. Let I denote the modified bessel function of the
first kind of order h. If a > b then

I (a)

I (b)
−
(a

b

)h
� ah

I (b)
× a2 − b2

2h+2
(h + 2)
.

Proof. Recall that I may be defined as

I (x) =
∞∑

m=0

xh+2m

2h+2m
(m + h + 1)
(m + 1)
.

Thus

I (a)

I (b)
−
(a

b

)h
= I (a)bh − ahI (b)

bhI (b)

=
ahbh

∑∞
m=0

a2m−b2m

2h+2m
(m+h+1)
(m+1)

bhI (b)
.

Since a > b, we have that a2m − b2m is always positive. Thus
we can get a lower bound by simply taking one of the terms.
Choosing m = 1, we get our final result. �

APPENDIX C: PROOF OF THEOREM 1

Let A ⊂ Ã ⊂ �, B ⊂ B̃ ⊂ �. Let Ã, B̃ be disjoint and hA,B(x) ε-flat with respect to �\(Ã ∪ B̃). We assume the set boundaries
are all smooth.

Under these conditions, we will show we can use local capacities to get good approximations for hA,B(x) when x /∈ Ã, B̃. To do
so, our key idea is to uncover upper and lower bounds on the value of the Dirichlet form applied to this function, E (hA,B, hA,B).
We will see that these bounds can be understood in terms of local capacities, and the resulting inequalities will then yield our
main result in the form of Theorem 1.

Lemma 5. Let S = �\(A ∪ B). The Dirichlet form of hA,B on S can be upper-bounded in terms of the capacities:

ES (hA,B, hA,B) � cap(A, Ã) cap(B, B̃)

cap(A, Ã) + cap(B, B̃)
.

Proof. We recall from Appendix A that

ES (hA,B, hA,B) = cap(A,�\B) � ES (u, u)

for any u with u(∂A) = 1, u(∂B) = 0. Thus, to prove an upper bound it suffices to find any such function for which we can
calculate E (u, u). To this end, consider

uc(x) �

⎧⎨⎩(1 − c)hA,Ãc (x) + c if x ∈ Ã
c[1 − hB,B̃c (x)] if x ∈ B̃
c otherwise.

These functions are well suited to giving us upper bounds on ES (hA,B, hA,B). Indeed:
(1) uc(∂A) = 1, uc(∂B) = 0. In fact, uc takes a constant value c outside of Ã, B̃, drops smoothly in B̃ to achieve 0 on ∂B, and

rises smoothly in Ã to achieve 1 on ∂Ã.
(2) Noting that uc is written as a piecewise combination of hitting probability functions, we see that its Dirichlet form can be

calculated in terms of capacities on local regions: ES (uc, uc) = (1 − c)2 cap(A, Ã) + c2 cap(B, B̃).
Thus the uc functions give us a practical way to calculate upper bounds:

ES (hA,B, hA,B) � (1 − c)2 cap(A, Ã) + c2 cap(B, B̃).

This inequality holds for any value of c. To get the best bound, we can take derivatives to minimize the right hand side with
respect to c. The result is

c∗ = cap(A, Ã)

cap(A, Ã) + cap(B, B̃)
.

Plugging this into the previous equation, we obtain our final result. �
Lemma 6. Let S = �\(A ∪ B). Let m = 1

2 {supx/∈Ã,B̃ hA,B(x) + infx/∈Ã,B̃[hA,B(x)]}. The Dirichlet form of hA,B can be lower
bounded in terms of m and the capacities:

ES (hA,B, hA,B) �
(

1 − m − ε

2

)2
cap(A, Ã)Im�1− ε

2
+
(

m − ε

2

)2
cap(B, B̃)Im� ε

2
.
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Proof. Recall that ES (hA,B, hA,B) can be expressed as an integral over S. We decompose this into three integrals: one over Ã,
one over �\Ã, B̃, and one over B̃:

ES (hA,B, hA,B) =
∫

Ã\A
‖σ∇hA,B‖2ρ(dx) +

∫
B̃\B

‖σ∇hA,B‖2ρ(dx) +
∫

�\Ã,B̃
‖σ∇hA,B‖2ρ(dx).

Since the integrand is always positive, we can get a lower bound by simply ignoring the integral over �\Ã, B̃ and focusing on
the integrals over Ã, B̃. The Ã, B̃ integrals can be lower bounded using capacities.

For example, let us focus on the A integral. There are two different possibilities we must consider:
(1) If m > 1 − ε/2 we will simply note that the integral over the Ã region is non-negative.
(2) If m � 1 − ε/2, then we define

uA(x) �
hA,B(x) − m − ε

2

1 − m − ε
2

.

Note that hA,B(x) = 1 for x ∈ ∂A and the ε-flatness condition shows that hA,B(x) � m + ε
2 for x ∈ ∂Ã. Thus uA(∂A) �

1, uA(∂Ã) � 0. Lemma 8 from Appendix E may then be applied to yield that EÃ\A(uA, uA) � cap(A, Ã). We can thus obtain
the bound ∫

Ã\A
‖σ∇hA,B‖2ρ(dx) =

(
1 − m − ε

2

)2
EÃ\A(uA, uA)

�
(

1 − m − ε

2

)2
cap(A, Ã).

Putting these two possibilities together, we obtain∫
Ã\A

‖σ∇hA,B‖2ρ(dx) �
(

1 − m − ε

2

)2
cap(A, Ã)Im�1− ε

2
.

Applying the same ideas to the integral over B̃, we obtain our result.
We are now in a position to prove Theorem 1: �
Theorem 1. Assume that hA,B(x) is ε-flat relative to �\(Ã ∪ B̃). Then the first-passage probabilities can be well approximated

in terms of the target capacities:

sup
x/∈Ã,B̃

∣∣∣∣hA,B(x) − cap(A, Ã)

cap(A, Ã) + cap(B, B̃)

∣∣∣∣ � ε +
√

ε/2.

Proof. To simplify notation, let κA = cap(A, Ã) and κB = cap(B, B̃). Applying the previous two lemmas together, we obtain
the inequality

κAκB

κA + κB
� E (hA,B, hA,B) �

(
1 − m − ε

2

)2
κAIm�1− ε

2
+
(

m − ε

2

)2
κBIm� ε

2
,

where m = 1
2 (supx/∈Ã,B̃ hA,B(x) + infx/∈Ã,B̃(hA,B(x))). In analyzing this inequality, there are three possibilities to consider.

If m ∈ (ε/2, 1 − ε/2), the quadratic formula yields

m � κA

κA + κB
+

ε
2 (κB − κA) − √

κAκBε(2 − ε)

κA + κB
,

m � κA

κA + κB
+

ε
2 (κB − κA) + √

κAκBε(2 − ε)

κA + κB
.

Applying | κB−κA
κA+κB

| � 1 and the fact that the geometric mean
√

κAκB never exceeds the arithmetic mean (κA + κB)/2, it follows
that ∣∣∣∣m − κA

κA + κB

∣∣∣∣ � ε + √
ε(2 − ε)

2
.

Applying the fact that m was designed so that |hA,B(x) − m| < ε/2 for all x /∈ Ã, B̃, we obtain∣∣∣∣hA,B(x) − κA

κA + κB

∣∣∣∣ � 2ε + √
ε(2 − ε)

2
.

If m < ε/2, our equations become

��κAκB

κA + κB
�
(

1 − m − ε

2

)2

��κA.
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Our assumption that m � ε/2 indicates that (1 − m − ε/2)2 � (1 − ε)2, and thus in fact we have

κB

κA + κB
� (1 − ε)2 = 1 + ε2 − 2ε,

which means that κA/(κA + κB) � 2ε − ε2 � 2ε. Thus we assumed m ∈ [0, ε/2] and showed that κA/(κA + κB) ∈ [0, 2ε − ε2],
so it follows that ∣∣∣∣m − κA

κA + κB

∣∣∣∣ � 2ε − ε2,

and so for any x /∈ Ã, B̃, we have ∣∣∣∣hA,B(x) − κA

κA + κB

∣∣∣∣ � 2.5ε − ε2.

If m > 1 − ε/2, the same bound can be achieved by arguments which are symmetric to those employed in m < ε/2:∣∣∣∣hA,B(x) − κA

κA + κB

∣∣∣∣ � 2.5ε − ε2.

Our final result is found by noting that all these bounds are upper bounded by ε + √
ε/2. �

APPENDIX D: PROOF OF PROPOSITION 1

We first establish a lemma, using Green’s first identity and some properties of the stationary SDE (1), under the reversibility
conditions (3), relative to U :

Lemma 7. Fix some S ⊂ � with smooth boundary. Then for any smooth function g that satisfies Lg = 0 and smooth
function f ∫

S
∇ f (x)T a(x)∇g(x)e−U (x)dx =

∫
∂S

f (x)n(x)T a(x)∇g(x)e−U (x)H (dx),

where n are the normal vectors facing out of the set S and H (dx) is the integral with respect to the (n − 1)-dimensional
Hausdorff measure and

(L f )(x) �
∑

i

bi(x)
∂ f (x)

∂xi
+ 1

2

∑
i j

ai j (x)
∂2 f (x)

∂xi∂x j
.

Proof. This result is essentially a direct corollary of Green’s identities. Apply Green’s first identity to get∫
S
∇ f T a∇ge−U dx =

∫
∂S

f nT a∇ge−U H (dx) −
∫

S
f ∇ · (a∇ge−U ) dx,

where

∇ · (a∇ge−U ) =
∑

i

∂

∂xi

⎡⎣∑
j

e−U ai j
∂g

∂x j

⎤⎦.

Next, using the reversibility constraint on b from Equation (3), it’s not hard to verify that

∇ · (a∇ge−U ) = 2e−ULg = 0.

This gives us the desired result. �
Proposition 1. For any regions G and G̃ having smooth boundaries and such that A ⊂ G ⊂ G̃ ⊂ Ã, cap(A, Ã,) can be expressed

as a flux leaving G̃\G:

cap(A, Ã) =
∫

∂ (G̃\G)
hA,Ãc (x)n(x)T a(x)∇hG,G̃c (x)e−U (x)H (dx),

where a(x) = σ (x)σ (x)T is the diffusion matrix, H (dx) is the (n − 1)-dimensional Hausdorff measure, and n represents the
outward-facing (relative to G̃\G) normal vector on ∂ (G̃\G).

Proof. This result is certainly known, but we include a proof here because we were unable to find a proof in the literature.
First, recall that LhA,Ãc = 0 and

cap(A, Ã) =
∫

Ã\A
∇hA,Ãc (x)T a(x)∇hA,Ãc (x)e−U (x) dx.
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Together with Lemma 7, this yields that

cap(A, Ã) =
∫

∂ (Ã\A)
hA,Ãcn

T a∇hA,Ãc e−U H (dx) = −
∫

∂A
nT a∇hA,Ãc e−U H (dx), (D1)

where in the last step we used hA,Ãc (x) = 1, x ∈ ∂A, hA,Ãc (x) = 0, x ∈ ∂Ã. Also, note that the normal vector on the right-hand
side is pointing out of the set A, as is our convention. Hence then negative sign.

Next we apply Lemma 7 again to get

0 =
∫

G\A
���∇(1)a∇hT

A,Ãc e
−U dx =

∫
∂ (G\A)

nT a∇hA,Ãc e−U H (dx).

Combining this with Eq. (D1) gives us

cap(A, Ã) = −
∫

∂A
nT a∇hA,Ãc e−U H (dx) =

∫
∂G

nT a∇hA,Ãc e−U H (dx). (D2)

Using the facts that hG,G̃c (x) = 1, x ∈ ∂G, hG,G̃c (x) = 0, x ∈ ∂G̃, and LhG,G̃c = 0, we apply Lemma 7 two more times to obtain

cap(A, Ã) =
∫

∂G
nT a∇hA,Ãc e−U H (dx) =

∫
∂G

hG,G̃cn
T a∇hA,Ãc e−U H (dx)

=
∫

∂ (G̃\G)
hG,G̃cn

T a∇hA,Ãc e−U H (dx) =
∫

G̃\G
∇hG,G̃c a∇hA,Ãc e−U dx

=
∫

∂ (G̃\G)
hA,Ãcn

T a∇hG,G̃c e−U H (dx).

�
Corollary. For any region S having smooth boundary ∂S, and such that A ⊂ S ⊂ Ã, cap(A, Ã,) can be expressed as a flux

leaving S:

cap(A, Ã) =
∫

∂S
n(x)T a(x)∇hA,Ãc (x)e−U (x)H (dx),

where a and H (dx) are as defined in the proposition, and n is the outward-facing normal on ∂S.
Proof. Put G = S in Eq. (D2). �

APPENDIX E: INEQUALITY BOUNDARY CONDITIONS FOR THE VARIATIONAL FORM

Recall that hA,B(x) may be defined variationally. We have let

E ( f , g) �
∫

�

∇ f (x)T a(x)∇g(x)ρ(dx)

denote the “Dirichlet form.” Let � ⊂ Rn compact and open with smooth boundary. Let L 2(�̄, ρ) denote the Hilbert space of
functions on �̄ which are square-integrable with respect to a continuous positive measure ρ(dx) = e−U dx. Let H1(�̄, ρ) =
W 1,2(�̄, ρ) ⊂ L 2(�̄, ρ) denote the corresponding once weakly differentiable Hilbert-Sobolev space. Let A, B ⊂ �, open,
disjoint, with smooth boundary, and define cap(A,�\B) ∈ R as the minimizing value of the problem

min
u∈H1

E (u, u)

subject to u(x) = 1, x ∈ A

u(x) = 0, x ∈ B.

It is natural to consider an apparently different problem, where the equality boundary conditions are replaced with inequalities.
Here we show that it is not possible to get lower than cap(A,�\B) by such a relaxation.

Lemma 8. Let h̃ satisfy h̃(x) � 1 on A and h̃(x) � 0 on B. Then E (h̃, h̃) � cap(A,�\B).
Proof. This result is certainly known, but we include a proof here because we were unable to find a proof in the literature.

Let k = clamp(h̃, 0, 1), i.e.,

k(x) =
⎧⎨⎩h̃(x) h̃(x) ∈ [0, 1]

0 h̃(x) � 0
1 h̃(x) � 1

.
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Note that k ∈ H1 and satisfies the equality boundary conditions. Thus, by definition, cap(A,�\B) � E (k, k). This immediately
yields our result:

cap(A,�\B) � E (k, k) =
∫

‖σ∇k‖2ρ(dx) =
∫

x: h̃(x)∈[0,1]
‖σ∇h̃‖2ρ(dx) �

∫
‖σ∇h̃‖2ρ(dx) = E (h̃, h̃).

�

APPENDIX F: SHELL METHOD

The algorithm for estimating local hitting probabilities is outlined as follows:
Algorithm 1. Estimating hR,R̃c (x) for many values of x on a shell ∂S
Input. R ⊂ S ⊂ R̃ ⊂ � and a stationary reversible diffusion process {Xt }t�0 in � with invariant measure μ = e−U (x)dx. We

also require a series of subsets

R = S0 ⊂ S1 ⊂ · · · ⊂ Sm−1 ⊂ Sm = S ⊂ Sm+1 ⊂ · · · ⊂ Sn = R̃,

which indicate a kind of reaction coordinate.
Output. A collection of points z1, . . . , zNp on ∂S sampled from the invariant measure μ = e−U (x)dx restricted on ∂S, along

with estimates of hR,R̃c (zi ) for each point.
(1) Discretize the space.

(a) Generate an ensemble of samples z1, . . . , zNp on ∂S according to the invariant measure μ = e−U (x)dx restricted to ∂S.
(b) Evolve the ensemble on ∂S, by repeatedly sampling an initial location from the uniform distribution on {z1, . . . , zNp}

and carry out a local simulation following the dynamics of {Xt }t�0 until the trajectory hits either ∂Sm−1 or ∂Sm+1. Record the
hitting locations on ∂Sm−1 and ∂Sm+1 until we have Np points on both ∂Sm−1 and ∂Sm+1. In most cases, the process is more
likely to hit one of Sm−1, Sm+1 than the other, and we need to run more than 2Np local simulations to get at least Np samples
on both shells. We store the results of the redundant local simulations for future estimation of transition probabilities.

(c) Repeat the above process to sequentially evolve the ensembles on ∂Sm−1, . . . , ∂S2 and on ∂Sm+1, . . . , ∂Sn−2, to get
Np samples on all of the intermediate shells ∂S1, . . . , ∂Sn−1. Store the results of the redundant local simulations for future
estimation of transition probabilities.

(d) For each one of the shells ∂S1, . . . , ∂Sn−1, cluster the Np samples on that shell into Nb states. In our implementation,
we use k-means, and represent the Nb states by the Nb centroids we get from the algorithm.
The result of this step is a partitioning of each shell ∂Si into Nb regions, representing an adaptive discretization of the shells.

For a point on a shell ∂Si, we identify its corresponding discrete state by finding the nearest centroid.
(2) Estimate the transition probabilities between these discrete states by running an additional Ns local simulations for each

one of the Nb states on each shell. The result of this step is an estimate of the probability of transitioning from state k on ∂Si to
state l on ∂Sj , which we denote by P(i, j)

k,l , where k, l ∈ {1, . . . , Nb} and i, j ∈ {1, . . . , n − 1} with |i − j| = 1.
(3) Use the transition probabilities to get an estimate of the hitting probabilities for the Nb states on ∂S. In line with related

works on Markov state models [26–28], we approximate the continuous dynamics using closed-form calculations from the
discrete Markov chain we have developed in the previous two steps. In particular, we estimate overall hitting probabilities
using the standard “one-step analysis.” For any k ∈ {1, . . . , Nb} and i ∈ {1, . . . , n − 1}, let u(i)

k denote the probability of hitting
∂R = ∂S0 before hitting ∂R̃ = ∂Sn if we start the discretized process at state k on ∂Si. We can calculate our object of interest by
solving the matrix difference equation

u(i) = P(i,i+1)u(i+1) + P(i,i−1)u(i−1), i = 1, . . . , n − 1

with boundary conditions u(0) = 1, u(n) = 0, where 0 and 1 are vectors of all 0’s and 1’s. This gives the estimated hitting
probability for each discrete state. We then estimate the hitting probability of each point zi by

hR,R̃c (zi ) = u(m)
k , zi ∈ state k on ∂S. (F1)

APPENDIX G: DETAILS ON ENERGY FUNCTION

For the energy function, we hand designed two different kinds of landscape: random well energy, which we use for the region
around target A, and random crater energy, which we use for the region around target B. The basic components of these energy
functions are the well component, given by

Fw(x|dw, r) = −dw

r4

(||x − xA||42 − 2r2||x − xA||22
)− dw, (G1)

where dw gives the depth of the well; the crater component, given by

Fc(x|dc, h, r) = dc

3b2r4 − r6

(
2||x − xB||22 − 3(b2 + r2)||x − xB||42 + 6b2r2||x − xB||22

)− dc, (G2)
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where dc and h give the depth and the height of the crater, respectively, and

b2 = − 1

3d

(
−3dcr2 + C + �0

C

)
(G3)

with

C = 3r2 3

√
dch[dc +

√
dc(dc + h)], �0 = −9dchr4;

and finally a random component, given by

Fr (x|μ, σ ) =
m∑

i=1

d∏
j=1

exp

[
− (x j − μi j )2

2σ 2
i j

]
, (G4)

where μ = (μi j )m×d and σ = (σi j )m×d , with μi = (μi1, . . . , μi,d ), i = 1, . . . , m being the locations of m Gaussian random
bumps in the region around the targets, and σi j, i = 1, . . . , m, j = 1, . . . , d gives the corresponding standard deviations.

To make sure the energy function is continuous, and the different components of the energy function are balanced, we
introduce a mollifier, given by

Fm(x|x0, r) = exp

(
− r

r − ||x − x0||20
2

)
, (G5)

where x0 = xA, r = rȦ or x0 = xB, r = rḂ, depending on which target we are working with, and a rescaling of the random
component, which is given by 0.1 × dw if we are perturbing the well component, and 0.1(dc + h) if we are perturbing the crater
component.

Intuitively, for the well component, we use a fourth-order polynomial to get a well-like energy landscape around the target
that is continuous and differentiable at the boundary. Similarly, for the crater component, we use a sixth-order polynomial
to get a crater-like energy landscape around the target that is also continuous and differentiable at the boundary. For the
random component, we are essentially placing a number of Gaussian bumps around the target. And for the mollifier, we
are designing the function such that it’s almost exactly 1 around the target, until it comes to the outer boundary, when
it transitions smoothly and swiftly to 0. To summarize, given parameters dw, dc, h and random bumps μA, μB with μA

i ∈
Ȧ \ A, i = 1, . . . , mA, μB

i ∈ Ḃ \ B, i = 1, . . . , mB, and the corresponding standard deviations σ A, σ B with σ A
i j , i = 1, . . . , mA, j =

1, . . . , d, σ B
i j , i = 1, . . . , mB, j = 1, . . . , d , the energy function we used in the experiments is given by

F (x) = Fw(x|dw, rȦ) + 0.1 × dw × Fm(x|xA, rȦ) + Fr (x|μA, σ A),∀x ∈ Ȧ \ A, (G6)

F (x) = Fc(x|dc, h, rḂ) + 0.1 × (dc + h) × Fm(x|xB, rḂ) + Fr (x|μB, σ B),∀x ∈ Ḃ \ B. (G7)

In our actual experiments, we used

dw = 10.0, dc = 6.0, h = 1.0, σ A
i j = σ B

k,l = 0.01, ∀i, j, k, l

and

μA =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.512 0.583 −0.013 0.013 −0.001
0.464 0.575 −0.001 0.019 −0.014
0.503 0.611 −0.012 −0.024 0.023
0.5 0.601 −0.024 0.034 0.011

0.486 0.586 0.006 0.01 0.001
0.489 0.588 −0.017 0.002 0.027
0.493 0.585 0.015 −0.001 −0.032
0.516 0.596 0.027 −0.026 0.022
0.514 0.624 0.01 0.01 −0.002

0.5 0.605 0.017 −0.016 0.004

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, μB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.696 −0.006 0.023 −0.041 0.019
−0.731 0.021 −0.033 −0.014 0.017
−0.694 −0.034 −0.009 0.031 0.019
−0.666 −0.013 0.002 0.017 0.009
−0.68 0.058 0.007 −0.011 −0.008
−0.704 −0.022 0.034 0.003 0.026
−0.714 −0.015 0.017 0.027 0.028
−0.681 0.017 −0.046 −0.04 −0.002
−0.648 −0.009 0.002 −0.012 −0.022
−0.664 −0.04 0.05 −0.012 −0.002

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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