
Sparse Feature Selection by Information Theory
Guangyao Zhou, Stuart Geman

Division of Applied Mathematics, Brown University
Providence, RI, USA

guangyao zhou@brown.edu, stuart geman@brown.edu

Joachim M. Buhmann
Department of Computer Science

ETH Zurich, Switzerland
jbuhmann@inf.ethz.ch

Abstract—Learning sparse structures in high dimensions de-
fines a combinatorial selection problem of e.g. informative feature
dimensions and a subsequent estimation task to determine
adequate model parameters. The arguably simplest sparse in-
ference problem requires estimating a sparse mean in high
dimensions when most dimensions should be discarded [6]. We
reduce sparse mean estimation to a pure selection problem by
restricting the source to binary values that are contaminated
with various noise models. The model selection principle of
Approximation Set Coding [2], [3] is rigorously applied, and
generalization capacity is used to evaluate different algorithms.
Simulation results demonstrate the effectiveness of generalization
capacity compared to traditional model selection approaches.
Sampling-based approximation yields insights into the behavior
of algorithms in high dimensions at different noise levels.

I. INTRODUCTION

Estimating sparse structures or patterns in very high di-
mensional data requires selecting informative dimensions and
estimating corresponding model parameters. Sparse linear
regression [1], sparse mean estimation [6] and compressive
sensing [5] belong to this category of statistical problems with
a distinct combinatorial flavor.

Arguably, the simplest case of sparse estimation is defined
by the sparse centroid problem where we estimate a location
parameter µ = (µ1, . . . , µd) ∈ Rd based on n samples
{X1, . . . , Xn} ∈ X ⊂ (Rd)n. This statistical task is well
posed by the assumption that most dimensions j are irrele-
vant for the estimation and the respective components vanish
(µj = 0). The informative dimensions with “signal” in the
data are encoded by µj 6= 0.

In this paper, we will study the sparse centroid problem
under a simplified set-up:

Data Generating Mechanism: The data are assumed to be
generated by a sparse source that has binary coordinates with
exactly p ones, i.e., ∀1 ≤ j ≤ d, µ0

j ∈ {0, 1} =: B, |µ0|1 = p

Xj = µ0
j + εj(σ) . (1)

ε(σ) is the noise part, whose noise level is controlled by σ ≥ 0.
The simplification µ0 ∈ Bd restricts sparse centroid estimation
to a support recovery problem which isolates the combinatorial
selection part of the inference from the parameter estimation
part.

Hypothesis Space: The solution space or hypothesis space
C of this inference problem is assumed to be a subset of the d-
dimensional Boolean cube C ⊂ Bd with the sparsity constraint
∀µ ∈ C, |µ|1 = p.

Goal and Algorithms: Our goal here is to recover the
true sparse centroid from the noisy data. Algorithms to solve
this inference problem can often be characterized by cost
minimization where the cost R(µ,X) measures the quality
of a particular hypothesis µ ∈ C for a given data set X .

If we choose different cost functions, we get different
algorithms, and a natural question to ask is: how to de-
cide among these algorithms? There are some established
approaches in classical statistics, e.g., the generalization error.
In this paper, we advocate an information-theoretic approach
called Approximation Set Coding [2], [3], in which we use a
key quantity called “generalization capacity” (denoted as GC
in the rest of the paper) to evaluate different algorithms.

The main contributions of the paper are twofold: (1) It gives
the first simple enough yet interesting example to which Ap-
proximation Set Coding can be rigorously applied.1 (2) Instead
of conditioning on two specific data sets in deriving GC, as we
did in the previous works on Approximation Set Coding, we
average over all data set pairs by taking expectation w.r.t. the
joint distribution of independent data set pairs in order to make
GC more robust. This new approach gives rise to a quenched
averaging problem, whose difficulty has long been recognized,
and a sampling-based approximation method provides us with
some interesting insights into the behavior of GC.

The rest of the paper is organized as follows: in Section II,
we motivate the main idea of Approximation Set Coding, and
rigorously derive GC under the above set-up. In Section III,
we present some simulation results to illustrate how we can
use GC to evaluate different algorithms, and also compare
its performance with other model selection approaches. We
present the sampling-based approximation of GC for the
simple Gaussian noise model and a quadratic loss function
in Section IV, before concluding in Section V.

II. INFORMATION CONTENT OF ALGORITHMS

An algorithm A : X → C can be seen as a mapping from
the data space X to the hypothesis space C. A accepts a data
set X as input and outputs what A considers the optimal hy-
pothesis. For example, the inference principle of empirical risk
minimization suggests selecting the hypothesis with minimal

1There might be some subtleties for more complicated problems (e.g. the
assumption of existence of a corresponding transformation on the data space
for every transformation on the hypothesis space, which is discussed in Section
II), but the derivations of the error bound are mathematically rigorous for the
problem considered in this paper.

cost on the data set X , i.e., µ∗ ∈ arg minµ∈C R(µ,X). Since
data X is random, µ∗ also fluctuates and might be unstable.

Intuitively, fluctuations in the input X induce fluctuations
in the output of A, implying that we infer different hypotheses
for different data sets, but all of them should be considered
reasonable hypotheses returned by A. In some sense, all these
hypotheses are statistically indistinguishable when employing
A for inference. The size of this generalization set of statisti-
cally indistinguishable hypotheses depends on properties of A,
and it is an indicator of its “local” robustness, i.e., A’s ability
to generalize for such input data X . A small size implies that
the output of A is fairly stable, A can tolerate a relatively high
level of noise in the data, and A performs better at generalizing
than alternative procedures with large generalization sets. This
size, from our perspective, is a fundamental property of A, and
GC is our way of quantifying it.

Formally, suppose we have two data sets X ′, X ′′ which are
produced independently by the data generating mechanism (1),
the hypothesis space C, and a cost function R(µ,X). From the
above analysis, selecting a single best hypothesis might be
unwarranted. As an alternative inference strategy, we suggest
determining a weight function w(µ,X) ∈ [0, 1] which encodes
the plausibility of a hypothesis given the data. The normalized
version of these weights can be interpreted as a posterior
p(µ|X) = w(µ,X)∑

µ∈C w(µ,X) . Given a cost function R(µ,X), a
natural choice for the weight function is the Boltzmann weight
w(µ,X) := exp(−βR(µ,X))2. With this terminology, we
can define the partition function Zβ(X) =

∑
µ∈C wβ(µ,X)

and ∆Zβ(X ′, X ′′) =
∑
µ∈C wβ(µ,X ′)wβ(µ,X ′′). Our GC is

defined to be

I = max
β∈[0,+∞)

EIβ = max
β∈[0,+∞)

E log
|C|∆Zβ(X ′, X ′′)

Zβ(X ′)Zβ(X ′′)
(2)

The expectation is taken w.r.t. (X ′, X ′′).
The idea of using a Gibbs measure over C, with the

energy related to the cost of each hypothesis, is a central
concept of the PAC-Bayesian approach [4], [7]. However,
PAC-Bayesian Analysis bounds the true generalization error
with its empirical estimate and a penalty term, while we just
approximate the expected generalization capacity (2) by its
empirical counterpart.

To see how this formula (2) is derived and why it is a
good measure of the generalization ability of an algorithm,
we now set up the underlying communication problem. First,
we define the set of allowed transformations T, which is the
analog of the set of possible codebook vectors in Shannon’s
information theory. Here, by transformation, we mean a bi-
jective mapping τ : C → C from C to itself. Since we want
the transformation to move the generalization set around in C,
we discard all transformations that map a hypothesis to itself,
i.e., T =: {τ : C → C : τ is bijective, ∀µ ∈ C, τ ◦ µ 6= µ}.
We introduce an additional assumption that ∀τ ∈ T,∃ a
bijective mapping τD from the set of data sets to itself, s.t.

2We assume for simplicity that minµR(µ,X) = 0. If this minimization is
computationally intractable then weights w(µ,X) ∈ [0,+∞) are admissible.

w(τ ◦ µ, τD ◦ X) = w(µ,X),∀µ ∈ C and data set X . This
assumption is essential for the following error analysis of the
communication problem, and it holds in this specific example.
In fact, we can transform any of the hypotheses to any other
hypothesis by permuting the dimensions, and a corresponding
transformation (permuting dimensions in the same way on the
data space) obviously exists and satisfies the requirement.

The communication problem is stated as follows: given
a number M , we uniformly sample M transformations and
generate a codebook C = {τ1, · · · , τM} ⊂ T. Both the
sender and the receiver know the codebook, the data set X ′,
the cost function R(µ,X), and the parameter β. The sender
sends a transformation τs. The receiver accepts a data set
X̃ = τDs ◦ X ′′, and tries to estimate the sent transformation.
The challenge for the receiver is to distinguish between the
random fluctuations in X ′′ in its comparison to X ′ and the
unknown transformation τs. For this, the receiver has to exploit
the knowledge of X ′. We suggest the decoding rule

τ̂ ∈ arg max
τ∈C

Eµ|X′w(τ ◦ µ, X̃)

= arg max
τ∈C

∑
µ∈C w(µ,X ′)w(τ ◦ µ, X̃)

Zβ(X ′)

The decoding rule selects the transformation with the largest
expected weight on the transformed second data set X̃ . The
probability of a decoding error is

P (τ̂ 6= τs|τs) =

P
(

max
i 6=s

∑
µ∈C

w(µ,X ′)w(τi◦µ, X̃) >
∑
µ∈C

w(µ,X ′)w(τs◦µ, X̃)|τs
)

≤
∑
i 6=s

P
(∑
µ∈C

w(µ,X ′)w(τi ◦ µ, X̃) >
∑
µ∈C

w(µ,X ′)w(µ,X ′′)|τs
)

= (M − 1)P
(∑
µ∈C

w(µ,X ′)w(τ−1
s ◦τ ◦µ,X ′′) > ∆Zβ(X ′, X ′′)|τs

)
where τ is uniformly distributed on T and is the only source
of randomness. By Markov’s inequality, we have

P (τ̂ 6= τs|τs)

≤ (M − 1)
Eτ
∑
µ∈C w(µ,X ′)w(τ−1s ◦ τ ◦ µ,X ′′)

∆Zβ(X ′, X ′′)

=
M − 1

|T|∆Zβ(X ′, X ′′)

∑
τ∈T

∑
µ∈C

w(µ,X ′)w(τ−1s ◦ τ ◦ µ,X ′′)

=
M − 1

|T|∆Zβ(X ′, X ′′)

∑
µ∈C

w(µ,X ′)
∑
τ∈T

w(τ ◦ µ,X ′′)

By the definition of T and symmetry, if ∀µ, µ′ ∈ C, µ 6= µ′,
we define a(µ, µ′) = |{τ ∈ T : τ ◦ µ = µ′}|, then a(µ, µ′)
is a constant (denoted by a) and does not change with µ, µ′,
and |T| = (|C| − 1)a.

P (τ̂ 6= τs|τs) ≤
M − 1

|C| − 1

∑
µ∈C w(µ,X ′)

∑
µ∈C w(µ,X ′′)

∆Zβ(X ′, X ′′)

≤ M

|C|
Zβ(X ′)Zβ(X ′′)

∆Zβ(X ′, X ′′)
= M exp(−Iβ)

The second inequality holds since M < |C|. If Iβ is large,
we can reliably communicate more transformations than for
small Iβ . Since β is a parameter, we can maximize Iβ w.r.t β.
We define Iβ based on two specific data sets. The condition
of asymptotic error free communication should hold for all
typical pairs (X ′, X ′′) [3] and, therefore, we calculate EIβ
before maximizing over β. This derivation motivates GC
as defined in equation (2) as a reasonable characterization
of algorithm robustness, and illustrates how it measures an
algorithm’s generalization ability.

III. SOME SIMULATIONS

To illustrate how we can use GC to evaluate algorithms,
we carry out some simulation experiments. For a given noise
model, we estimate the expectation EIβ by sampling to
calculate GC: (i) sample a number of pairs of data sets, (ii)
calculate an Iβ for each pair and (iii) average these Iβ values
to estimate EIβ . We perform this procedure for a grid of β
values, and we calculate the maximum EIβ as the estimate of
GC. A µ0 ∈ C is assumed to be given in the data generating
mechanism (1).

Suppose we are provided with a pair of data sets X ′, X ′′.
To calculate the corresponding Iβ , we have to calculate three
partition functions Zβ(X ′), Zβ(X ′′) and ∆Zβ(X ′, X ′′). If we
use d to denote the number of dimensions and k to denote the
number of 1’s, then calculating each partition function involves
a summation of |C| =

(
d
k

)
terms. This number grows quickly as

d and k grows, so to make the numerical calculations tractable,
we consider a relatively simple case where d = 50 and k = 4.

A. Noise Models

To evaluate and compare different algorithms, we consid-
er three different noise models (1 ≤ j ≤ d): (a) Gaus-
sian Noise Model (GN): εj(σ)

i.i.d.∼ N(0, σ2), (b) Lapla-
cian Noise Model (LN): εj(σ)

i.i.d.∼ Laplace(0, σ), where
Laplace(0, σ) is the Laplace distribution with density function
exp(− |x|σ)/(2σ), x ∈ R, and (c) Gaussian Mixture Noise
Model (GMN): εj(σ)

i.i.d.∼ pN(0, σ2) + (1 − p)N(0, ασ2),
where α > 1 and N(0, ασ2) contaminates the Gaussian noise
part. In our experiment, we choose p = 0.2 and α = 100.

B. Algorithms

The ML estimator for the location parameter is the mean
for the Gaussian distribution, and the median for the Laplace
distribution. The density function of the Gaussian distribution
has a quadratic form in the exponent, while the density
function of the Laplace distribution has an absolute value in
the exponent. So it is reasonable to expect that an algorithm
using the mean as the location parameter and the L2 loss
should perform better for GN, while an algorithm using the
median as the location parameter and the L1 loss should
perform better for LN. GMN is just a contaminated version
of GN, so we expect an algorithm using the median as the
location parameter, which is robust to outliers, and the L2

loss should outperform an algorithm using the mean and the

L1 loss. Based on these observations, we design four different
algorithms, which correspond to four different cost functions:

R1bar(µ,X) =
∑d
j=1 |µj − X̄j |,

R1med(µ,X) =
∑d
j=1 |µj −Xmed

j |,

R2bar(µ,X) =
∑d
j=1(µj − X̄j)

2,

R2med(µ,X) =
∑d
j=1(µj −Xmed

j)2 ,

where X = {X(1), · · · , X(n)} is the data set, and X̄j , X
med
j

are the mean and median of {X(1)
j , · · · , X(n)

j }, respectively.
Since we assume the data are i.i.d generated and we are just

using the mean/median in the algorithm, varying the size of
the data set n is essentially equivalent to varying the level of
noise σ. We compare the algorithms at different noise levels,
so we simply set the size of the data set n = 100. We use the
noise levels σ = 1, 2, · · · , 10, 20. At each σ, we sample 100
pairs of data sets and compute Iβ for β from 0.1 to 20 with a
step size of 0.1. We then get the average of these Iβ’s to use
as EIβ and maximize over these β’s to get GC at this σ.

C. Other Model Selection Approaches

To gain insights into how GC actually performs, we com-
pare it to established model selection approaches. The pair of
data sets X ′, X ′′ suggests using X ′ as the training set and X ′′

as the validation set. Empirical risk minimization requires first
finding µ∗ ∈ arg minµ∈C R(µ,X ′) and then measuring the
generalization error R(µ∗, X ′′) to estimate the generalization
ability of the algorithm. We repeat the experiment 100 times
at each noise level and calculate the average.

Since we know the true mean in this example, we can also
compare the algorithms by calculating the expected overlap
between the learned mean and the true mean. This support
recovery procedure finds µ∗ ∈ arg minµ∈C R(µ,X ′) first,
and then uses the inner product µ∗ · µ0 to measure the
generalization ability. The experiment is repeated 100 times,
and the average µ∗ · µ0 serves as our expected overlap.

D. Experimental Results

The experimental results are shown in Table I with the best
results depicted in bold. From the tables, we can see that R2bar

consistently performs the best for GN, while R2med generally
performs the best for LN and GMN. This matches the results
given by the expected overlap, but differs from our expectation
for LN in that GC favors the L2 loss function over the L1

loss function. This seemingly unexpected result indeed shows
the effectiveness of GC in evaluating algorithms, since in this
specific example, the expected overlap should serve as the
ultimate criterion for evaluating algorithms because it uses the
true mean.

But the expected generalization error gives us a different
perspective. While R2bar remains the best for GN for small σ,
it starts to lose to other cost functions for larger σ. Specifically,
according to generalization error, it is no longer true that L2

loss is better than L1 loss under GN when σ is large. The
same effect happens with R2med under LN: R2med starts to

perform worse than R1bar when σ is large, suggesting that the
median performs worse than the mean. Under GMN, R2med

loses to R1med when σ is large, which again implies L1

loss performs better than L2 loss under a Gaussian-type noise
model. These results are inconsistent with the results from
expected overlap, which should be a better approach in this
example. This difference in the performance of GC and the
generalization error further demonstrates the advantage of GC
in evaluating algorithms.

IV. SAMPLING-BASED APPROXIMATION

The simulations in Section III are based on directly com-
puting the partition functions, but this is not practical for large
d and k. To analyze the behavior of GC in high dimensions,
we develop some sampling-based approximation methods. For
illustration, we only consider GN and the cost function

R2bar(µ,X) =

d∑
j=1

(µj − X̄j)
2 =

d∑
j=1

µj(1− 2X̄j) +

d∑
j=1

X̄2
j

(3)
From the set-up, we have X̄j

i.i.d.∼ N(µ0
j ,
σ2

n), so combining
equation (2) with (3) gives us

EIβ = log(

(
d

k

)
) + EZ log(

∑
µ∈C

e
4β(µ·µ0)+ 2

√
2βσ√
n

(µ·Z)
)

− 2EZ log(
∑
µ∈C

e
2β(µ·µ0)+ 2βσ√

n
(µ·Z)

) =: f(β) (4)

where Z = (Z1, · · · , Zd) and Z1, · · · , Zd
i.i.d.∼ N(0, 1).

A. Generalization Capacity Approximation

To approximate GC, we need to be able to evaluate f(β)
for any β. It is not hard to see, from equation (4), that
all we need is the ability to evaluate an expectation of the
form E(a, b) := EZ log(

∑
µ∈C e

a(µ·µ0)+b(µ·Z)), which can
be written as EZ log(|C|Eu(µ)ea(µ·µ

0)+b(µ·Z)), where u(µ) =
1
|C| ,∀µ ∈ C and a, b are some constants. The latter expression
gives us a sampling-based method for approximating E(a, b):
we first sample a large set of Z’s, and for each Z, we sample
µ’s uniformly from C. We then average over the samples, and
multiply the result by |C| to get an approximation of E(a, b).
For a given β, we can repeat this procedure twice for the two
expectations in f(β) to approximately evaluate f(β).

With the ability to approximately evaluate f(β), there
are two ways of getting GC: (1) evaluate f(β) for a
grid of β values and use the maximum as GC and (2)
get the optimal β value β∗ first, and then use f(β∗)

as GC. Getting β∗ involves calculating df(β)
dβ , which is

EZ [Ep1(µ|Z)µ · (4µ0 + 2
√
2σ√
n
Z)− 2Ep2(µ|Z)µ · (2µ0 + 2σ√

n
Z)]

where p1(µ|Z), p2(µ|Z) are Gibbs distributions with Boltz-

mann weights e4β(µ·µ
0)+ 2

√
2βσ√
n

(µ·Z)
, e

2β(µ·µ0)+ 2βσ√
n
(µ·Z) resp..

This equation gives us a sampling-based method of evaluating
df(β)
dβ : we first sample a large set of Z’s, and for each Z, we

sample µ’s from p1(µ|Z), p2(µ|Z), which are both exponential
family distributions, and then approximate df(β)

dβ by averaging

over the samples. The simulation results from Section III
suggest that the (β,EIβ) curve is concave in β, so a reasonable
way to get the optimal β is to use gradient ascent.

B. Behavior of Generalization Capacity in High Dimensions

Fig. 1. Approximated Generalization Capacity at Noise Level σ = 1

Fig. 2. Approximated Generalization Capacity at Noise Level σ = 2

In this part, we use the sampling-based methods outlined
above to study the behavior of GC in high dimensions. Since
it’s not very time consuming to evaluate f(β), and we haven’t
proved that the (β,EIβ) curve is concave in β, we use the first
method to approximate GC. As an illustrative example, we fix
k = 4, n = 100 and calculate GC at σ = 1, 2. The results
are shown in Figures 1 and 2. Since we are using sampling-
based methods, there are fluctuations in the results. So instead
of directly connecting different points (the blue dots in the
figure), we fit a two term exponential model (y = aebx+cedx),
which is the red curve in the figure.

Intuitively, we expect GC to decrease as d increases, since
increasing the number of irrelevant dimensions should make
identifying the feature dimensions harder. But as shown in
Figure 1, this is not the case: as d increases, GC first drastically
decreases, but then slowly increases. This is likely because at a
low noise level, when d increases, it is not significantly harder
to identify the feature dimensions, but the log(

(
d
k

)
) term in GC

increases at a faster rate when d is large. At a moderate noise
level (e.g. σ = 2), GC decreases, first at a very fast rate, then at
a much slower rate, as d increases, but remains relatively large
in high dimensions. At higher noise levels (e.g. σ = 5, 10),

TABLE I

Generalization Capacity

σ
Gaussian Noise Model Laplacian Noise Model Gaussian Mixture Noise Model

1bar 1med 2bar 2med 1bar 1med 2bar 2med 1bar 1med 2bar 2med
1 12.347 12.347 12.347 12.347 12.347 12.347 12.347 12.347 3.082 12.347 3.288 12.347
2 12.226 11.315 12.226 11.323 9.705 11.867 9.744 11.867 0.179 8.538 0.308 8.611
3 8.964 5.724 9.004 5.910 3.430 7.277 3.965 7.394 0.023 3.040 0.065 3.409
4 4.742 2.058 5.229 2.564 1.281 3.805 1.789 4.091 0.002 1.098 0.004 1.571
5 2.175 0.778 2.464 1.174 0.407 1.713 0.622 1.941 0.000 0.307 0.000 0.446
6 1.169 0.326 1.509 0.555 0.229 1.193 0.407 1.413 0.002 0.118 0.000 0.189
7 0.524 0.217 0.751 0.338 0.124 0.407 0.246 0.503 0.000 0.100 0.000 0.227
8 0.235 0.126 0.355 0.148 0.048 0.132 0.164 0.255 0.000 0.017 0.000 0.045
9 0.204 0.197 0.364 0.180 0.008 0.063 0.014 0.134 0.000 0.052 0.000 0.072
10 0.043 0.029 0.109 0.067 0.016 0.033 0.062 0.153 0.000 0.002 0.000 0.013
20 0.010 0.000 0.020 0.001 0.000 0.013 0.010 0.016 0.000 0.003 0.000 0.000

Expected Generalization Error (standard deviations in parentheses)

1 4(0.4) 5(0.5) 0(0.1) 1(0.2) 6(0.6) 4(0.5) 1(0.2) 1(0.1) 20(2.2) 6(0.6) 13(2.8) 1(0.2)
2 8(0.8) 10(1.2) 2(0.5) 3(1.0) 12(1.5) 8(1.2) 5(1.5) 2(0.8) 39(4.4) 13(1.5) 48(9.7) 6(1.7)
3 13(1.6) 16(2.1) 5(1.6) 9(2.5) 19(2.2) 14(1.7) 12(2.9) 6(1.8) 56(6.2) 20(2.4) 98(20.6) 13(3.2)
4 18(2.2) 22(2.9) 11(2.8) 16(4.3) 25(2.6) 18(2.2) 19(4.0) 11(2.7) 74(7.6) 26(2.8) 170(34.0) 23(4.7)
5 22(2.2) 27(2.7) 15(3.4) 23(4.6) 31(3.1) 23(2.6) 30(5.3) 18(4.0) 90(10.0) 33(3.2) 262(56.7) 34(6.9)
6 26(3.0) 32(3.0) 22(4.6) 32(5.7) 37(3.7) 28(3.2) 41(8.6) 25(5.6) 110(12) 39(4.3) 388(83.0) 49(9.7)
7 32(3.5) 38(4.5) 32(6.7) 47(9.8) 42(4.5) 32(3.5) 56(11.8) 34(7.6) 129(14) 46(4.7) 523(103.9) 64(12.1)
8 34(3.7) 42(4.5) 37(7.3) 55(12.1) 47(4.8) 37(4.1) 68(13.3) 43(10.2) 143(16) 51(4.6) 654(138.2) 79(13.3)
9 39(3.8) 47(4.8) 46(8.6) 69(14.1) 52(6.0) 40(4.6) 85(18.0) 51(11.5) 164(19) 56(5.7) 844(187.4) 98(18.2)
10 42(4.3) 51(5.3) 55(10.5) 82(16.4) 60(6.6) 45(4.4) 112(24) 65(13.3) 186(20) 63(6.7) 1078(218.8) 123(24)
20 81(8.2) 100(10) 202(43) 314(61) 114(11) 86(9) 405(74) 241(48) 361(39) 122(12) 4132(860.5) 476(90)

Expected Overlap (standard deviations in parentheses)

1 4.00(0.0) 4.00(0.0) 4.00(0.0) 4.00(0.0) 4.00(0.0) 4.00(0.0) 4.00(0.0) 4.00(0.0) 2.50(0.8) 4.00(0.0) 2.49(0.8) 4.00(0.0)
2 3.98(0.1) 3.82(0.4) 3.98(0.1) 3.82(0.4) 3.65(0.5) 3.91(0.3) 3.65(0.5) 3.91(0.3) 1.06(1.0) 3.43(0.6) 1.32(0.8) 3.43(0.6)
3 3.48(0.6) 2.88(0.7) 3.48(0.6) 2.89(0.7) 2.53(0.8) 3.27(0.6) 2.56(0.8) 3.29(0.6) 0.35(0.6) 2.45(0.8) 0.77(0.8) 2.49(0.8)
4 2.92(0.7) 2.36(0.9) 2.91(0.7) 2.32(0.9) 1.97(0.9) 2.82(0.7) 2.13(0.9) 2.84(0.7) 0.26(0.5) 1.88(0.9) 0.60(0.7) 1.96(0.9)
5 2.30(0.8) 1.86(0.8) 2.38(0.8) 2.02(0.8) 1.36(0.8) 2.19(0.8) 1.71(0.8) 2.26(0.8) 0.20(0.4) 1.35(1.0) 0.50(0.6) 1.49(0.8)
6 1.69(0.9) 1.19(0.8) 1.81(0.8) 1.50(0.8) 0.84(0.7) 1.58(0.8) 1.49(0.7) 1.81(0.8) 0.11(0.3) 0.95(0.8) 0.53(0.7) 1.31(0.8)
7 1.36(0.8) 1.09(0.9) 1.52(0.9) 1.32(0.9) 0.60(0.6) 1.06(0.8) 1.20(0.8) 1.46(0.8) 0.14(0.4) 0.55(0.7) 0.55(0.7) 1.21(0.8)
8 1.16(0.8) 0.73(0.8) 1.29(0.9) 1.15(0.8) 0.54(0.6) 0.79(0.7) 1.00(0.8) 1.20(0.8) 0.07(0.3) 0.34(0.6) 0.43(0.6) 1.06(0.8)
9 0.92(0.7) 0.52(0.6) 1.22(0.8) 1.01(0.7) 0.43(0.5) 0.77(0.7) 0.88(0.7) 1.11(0.8) 0.06(0.2) 0.52(0.7) 0.49(0.6) 0.93(0.7)
10 0.71(0.8) 0.39(0.6) 1.07(0.8) 0.85(0.8) 0.53(0.5) 0.65(0.6) 0.89(0.7) 1.09(0.8) 0.07(0.3) 0.33(0.5) 0.41(0.6) 0.81(0.7)
20 0.13(0.4) 0.17(0.4) 0.71(0.7) 0.65(0.7) 0.27(0.4) 0.38(0.5) 0.53(0.6) 0.65(0.7) 0.02(0.1) 0.13(0.4) 0.37(0.5) 0.50(0.6)

GC shows similar behavior, but the initial decreasing rate is
higher, and it approaches zero in high dimensions.

V. CONCLUSION

This paper discusses the combinatorial aspect of fea-
ture selection when computing the sparse centroid of high-
dimensional data. By restricting the feature values of the data
source to be binary, we separate the estimation problem from
the combinatorial search problem. Contrary to traditional mod-
el selection principles, Approximation Set Coding identifies a
set of hypotheses that are equally plausible given the uncertain
input data, and uses GC to evaluate the robustness of different
algorithms. In the simplified version of the sparse centroid
problem, GC shows us the superiority of L2 loss and mean
in the Gaussian noise case, and of L2 loss and median in the
Laplacian and Gaussian mixture noise case, which are verified
by the expected overlap criterion. The behavior of GC in high
dimensions shows R2bar works much better in low dimensions
than in high dimensions, and its ability to work, to some
extent, in high dimensions at a low noise level. These insights
from GC, some of which match our expectation while others
don’t, help us better understand the sparse centroid problem
and demonstrate the value of Approximation Set Coding in

understanding algorithms.
Acknowledgment: J.M. Buhmann would like to thank the

Division of Applied Mathematics of Brown University for its
hospitality during his sabbatical in Fall, 2013. His work was
partially funded by SNF Grant # 200021 138117. The work of
S. Geman and G. Zhou was partially supported by ONR under
contract N00014101933 and DARPA under contract FA8650-
11-1-7151.

REFERENCES

[1] Peter Bühlmann and Sara van de Geer. Statistics for High-Dimensional
Data Methods, Theory and Applications. Springer Series in Statistics.
Springer Verlag, Heidelberg, Berlin, New York, 2011.

[2] Joachim M. Buhmann. Information theoretic model validation for
clustering. In International Symposium on Information Theory, Austin
Texas. IEEE, 2010. (http://arxiv.org/abs/1006.0375).

[3] Joachim M. Buhmann. SIMBAD: emergence of pattern similarity. In
Similarity-Based Pattern Analysis and Recognition, Advances in Vision
and Pattern Recognition, pages 45–64. Springer Berlin, 2013.

[4] O. Catoni. Pac-Bayesian Supervised Classification: The Thermodynamics
of Statistical Learning. ArXiv e-prints, December 2007.

[5] David L. Donoho. Compressed sensing. IEEE Tr. on Information Theory,
52(4):1289, 2006.

[6] Iain M. Johnstone. On minimax estimation of a sparse normal mean
vector. Ann. Statist., 22(1):271–289, 1994.

[7] David A. McAllester. Some pac-bayesian theorems. Machine Learning,
37(3):355–363, 1999.

